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Abstract

An equilibrium in economics models can be often represented as a set of inter-temporal

difference (or differential) equations. These equations involve states and controls variables and

their solution are the so called policy functions. The general idea behind the method we propose

here is to view these inter-temporal equations as geometric restrictions (manifolds), so that time

shifted variables (in the present and/or in the past) are just others variables in a geometric space.

Each manifold (correspondent to each equation) can be obtained without using any notion of

time invariant policy function and it can be therefore computed separately from the others. For

this reason this process is fully parallelizable. Moreover, it is usually fast because often each

equation contains at least one variable that can be back out analytically. All manifolds are then

intersected through sequential binary operations, this process is computationally efficient since it

can be seen as a multi-steps univariate numerical optimization. The manifold that survives this

process is a geometric restriction between the states and one control. Finally, the correspondent

policy function can be unveiled imposing the fact that the variables in this surviving geometric

restriction must be connected thorugh a time-invariant function.

In this paper we propose a novel method to solve dynamic stochastic models. The main insight is

to view model optimality conditions as geometric restrictions rather than equations in time where

future variables are implied by a time consistent policy function. Current numerical methods

can be divided into two categories. On the one hand there are iteration based methods, such as

VFI or EGM, which iteratively find the policy functions independently of initial conditions. This

independence comes at a cost of having to evaluate or solve the same problem many times until
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convergence. On the other hand there are projection methods, which find the policy functions in

one maximization step, but require to solve a highly dimensional multivariate optimization problem

and most of the time works only given a reasonable guess. The method we introduce in this paper

suggests to view the model optimality conditions as geometric restrictions in space rather than

difference equations connected through Markov policy functions. In our method, each optimality

condition is a restriction in the space of both endogenous and exogenous variables, while the joint

information contained in all the optimality conditions is viewed as an intersection of the individual

geometric restrictions. The method has multiple advantages. First, it does not depend on the

initial guess. Secondly, it involves little use of numerical solver - geometric restrictions can be

found without using the solver and the calculation of the intersection is a univariate optimization

problem. Thirdly, the algorithm is easily parallelizable. A multivariate solver still needs to be used

once - in finding the survival Markov policy.

Simple deterministic example

To gain intuition in a concrete setup we first solve the Neoclassical Growth Model in a deterministic

setting. The equilibrium of the model can be summarized by the following two equations:

u′(c) = β
[
u′(c′)

(
zK ′α−1 + 1− δ

)]
c+K ′ − (1− δ)K = zKα

In the first step we substitute out c from the Euler Equation (using the budget constraint) and

obtain a geometric restriction between K, K ′ and K ′′. In the second step we take this restriction

and explicitly impose that K → K ′ and K ′ → K ′′ need to be connected by the same time invariant

policy function. Parameter values an functional forms are reported in Appendix.

1. Create a grid for K and K ′, hence obtain K ′′ using the following equation:

K ′′ = u′−1
[
u′(zKα + (1− δ)K −K ′)

β(1− δ + zK ′α−1)
− (F (K ′) + (1− δ)K ′))

]
This gives an implicit restriction : K ′′ = F e(K ′,K)

2. Impose the fact that policy is Markov: K ′ = f(K) and find f(.) from

f(f(K)) = F e(f(K),K)
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In this exmple, we assume that:

K ′ = f(K) = φ1 + φ2K + φ3K
2

In general, note that f(.) does not need to be parametric. Step (2) can as well be implemented

using non parametric methods such as artificial neural networks.

Figure 1 represents the visual implementation of the algorithm.
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Figure 1: The combination of the Euler equation and the budget constraint can be represented by

the manifold in the picture. The red dots are the points where the functions that connect Kt−1 to

Kt and Kt to Kt+1 are the same.

Stochastic example

In this section we illustrate the algorithm in a stochastic version of the same model. Recall the

optimality conditions:

u′(c) = βE
[
u′(c′)

(
z′FK(K ′) + 1− δ

)]
c′ +K ′ − (1− δ)Kt = zF (K)

In this example we obtain the geometric restrictions corresponding to the Euler equation and

the budget constraint separately and then illustrate how to find their intersection. In the last step
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we use the manifold that survives the intersection to find the policy function by imposing a Markov

restriction. Parameter values and functional forms are reported in Appendix.

1. Get the geometric restriction from the Euler equation. In a stochastic setting K ′′ is a function

of future z. We impose this restriction by evaluating the Euler equation on separate grids for

K ′′ when z is low (z = z1) and z is high (z = z2), denoted by K ′′1 and K ′′2 1. In the first

step we set grids for z, K ′, K ′′2 and K ′′1 and find a geometric restriction:

CE(K ′,K ′′1,K ′′2, z) = β
∑
i=1,2

π(zi|z)u′(F (K ′, z′) + (1− δ)K ′ −K ′′i)(FK(K ′, z′) + 1− δ)

2. Get the geometric restriction from the budget constraint - find C in terms of K,K ′, z

CB(K,K ′, z) = zF (K) + (1− δ)K −K ′

3. Intersect CB and CE

K ′(K,K ′′1,K ′′2, z)← CE(K ′,K ′′1,K ′′2, z) ∩ CB(K,K ′, z)

More formally, the intersection is defined as2:

K ′ = F k(K,K ′′1,K ′′2, z) = arg min
K′

(CE(K ′,K ′′1,K ′′2, z)− CB(K,K ′, z))2 (1)

Figure 2 illustrates this step on the dimension of K ′ and z, keeping K,K ′′1,K ′′2 fixed. Two

plains show the geometric restrictions on C and the red points indicate the points that solve

equation 1.
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Figure 2: Intersection of manifolds coming from budget constraint and Euler equation

1z is assumed to take two values
2F k only denotes a mapping between K,K′′1,K′′2, z and K
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4. Compute Markov policy K ′ = f(K, z):

Assume that f(K, z) has a parametric form f(K, z, φ) and solve the following functional

minimization problem 3:

φ = arg min
φ

(
f(K, z, φ)− F k(K, f(f(K, z, φ), z1, φ), f(f(K, z, φ), z2, φ), z)

)2
Figures 3 and 4 illustrate this step. The slices of the multi-dimensional manifold in figure 3

present the restrictionK ′ = F k(K,K ′′1,K ′′2, z) when z = z1 andK ′′2 = {K1,K3,K5,K7,K10}
4. Red dots present the implied policy for K ′ and K ′′2 starting from every point in the

K grid. One can notice that the policy function lies in the space confined by the K ′ =

F k(K,K ′′1,K ′′2, z) manifold. Figure 4 shows the analogous information fixing z at z = z2,

and K ′′1 = {K1,K3,K5,K7,K10}
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Figure 3: z = z1, K
′′2 - fixed
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Figure 4: z = z2, K
′′1 - fixed

Generic Algorithm

In this section we present a generic version of this algorithm for a generic model characterized by

a number j of optimality conditions and having X = {x1, x2, x3, x4...xi} variables (these variables

include all controls, endogenous and exogenous states variables and all their lags). Define the

manifold associated with the optimality condition j as M j(X). The algorithm is as follows:

1. For every optimality condition j find a manifold M j(X) implicitly defining the geometric

restriction on a variable xi in terms of X−i, such that M j(X) = F (X−i)− xi = 0. Note that

this step can be fully parallelized across j.

3It is not necessary to make parametric assumption here. Yet in this simple model a non-parametric function

would be unnecessary
4K1,K3,K5,K7,K10 are points on the K′′2 grid
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2. Iteratively find the pairwise intersections of the j manifolds. Denote M̃1(X) the manifold

after intersecting the two M j(X) manifolds:

M̃1(X) = M j1(X) ∩M j2(X)

Keep calculating the intersections until all information from the optimality conditions is

exhausted:

M̃ i(X) = M ji+1
(X) ∩ M̃ i−1(X)

3. Solve for Markov policy

Define M̃ i(X, f) ≡ F (X−i, f)− f(xi) = 0 and find the policy function f

f = arg min
f

(F (X−i, f)− f(xi))
2

Robustness

The method depends on finding geometric restrictions on independent grids. In general, problems

arise when some combinations of grid points result in unfeasible values of endogenous variables.

As a last exercise we solve a model when δ = 0.1, in this case the grids are built such that the

geometric restrictions imply negative consumption in a large number of grid points. For illustration

purposes we assign K’ to be 0 in proximity of the unfeasible points (otherwise complex numbers or

NaN value will arise in these areas). As long as the intersection process and the Markov seeking

procedure operate in a geometric area not intersected by this unfeasible area the procedure still

works. Figures 5 and 6 illustrate this idea.
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Figure 5: Policy with unfeasible grid points, z =

z1
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Appendix

γ β α δ z1, z2 Pz

2 0.98 1/3 0.5 0.95, 1.05

0.1 0.9

0.9 0.1



F (K) = Kα, u(c) = c1−γ

1−γ
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