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Abstract

We develop a model of capital accumulation in an economy that sources invest-

ment goods from large firms with market power. We model investment-goods pro-

ducers as a dynamic oligopoly with increasing marginal cost and characterize the

equilibrium with a dynamic markup rule. We use this characterization to analyze

the dynamics of investment and prices. The markup on investment goods acts as an

endogenous adjustment cost, which decreases as the economy grows but permanently

distorts the steady state. We calibrate the model to simulate the post-2020 shocks

to demand for equipment and semiconductors. The calibrated model attributes the

observed increase in the price of equipment mainly to increasing marginal costs and

to a smaller extent to increasing markups. We then analyze the effects of policy

interventions to expand capacity and address market power. Finally, we extend the

model to investment-specific technological progress due to learning by doing.
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1 Introduction

The post-2020 global recovery has been a stark reminder of the dependence of the macroe-

conomy on the supply of critical inputs produced by highly concentrated industries, such

as semiconductors.1 These goods are necessary inputs in the production of equipment

investment. When demand for durable goods surged during the recovery, semiconductor

prices soared, dampening capital accumulation, contributing to inflation, and prompting

ambitious policy responses.2

More broadly, for many critical types of investment goods–such as commercial aircraft,

ships, electric vehicles, and construction machinery–a relatively small number of large global

producers supply the world economy.

The goal of this paper is to analyze the role of market power in investment-goods mar-

kets for the dynamics of prices, capital accumulation, and output. To this end, we develop

a general framework that combines a neoclassical growth model of capital accumulation

with a dynamic oligopoly model of investment-goods producers. We characterize the equi-

librium interactions between investment and markups. We then apply this framework to

analyze quantitatively the role of market power in the semiconductor industry for post-2020

equipment price dynamics and the related policy interventions.

Figure 1 portrays the dynamics of the US Producer Price Index of semiconductors (solid

line) and of machinery and equipment (dashed line), both deflated using the GDP deflator.

Starting in 2020, semiconductor prices increased dramatically, reaching a 20% deviation

from their trend in 2023. Over the same period, the overall price of equipment goods,

which require semiconductors as inputs, also increased significantly and was 7% higher

than its trend in 2023.3

Given the high concentration of the semiconductor industry, it is natural to ask to what

extent these price increases were driven by higher marginal costs—e.g., due to capacity

constraints—or higher markups. Moreover, understanding the macroeconomic role of these

markets is paramount because it is likely that future economic growth will increasingly

rely on semiconductors. Motivated by these questions, our framework allows us to shed

lights more generally on the macroeconomic role of market concentration in durable-goods

markets, both in response to shocks and in the long run.

1In 2021, the two largest semiconductor manufacturers—TSMC and Samsung—jointly accounted for
approximately 70% of global sales.

2In the US, the CHIPS and Science Act of 2022 aimed at generating hundreds of billions of dollars of in-
vestment in semiconductor manufacturing to rebalance the global patterns of production of semiconductors,
which is concentrated in Asia.

3In Appendix A.1 we provide additional empirical evidence on these price series and on the dynamics
of semiconductor and equipment markets during the recovery.
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Figure 1: Semiconductor and Equipment Price Dynamics
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Notes: The figure displays the US Producer Price Index of Semiconductors (FRED series

PCU334413334413A) and the US Producer Price Index of Machinery and Equipment (FRED series WPU11)

during 2016-2023. Both series are deflated using the US GDP deflator (FRED series A191RD3A086NBEA)

and displayed in percent deviations from a linear trend fitted during 2012-2019.

In our model, an economy accumulates capital by importing investment goods according

to a standard investment Euler equation. Investment requires an input produced by an

oligopolistic industry. Foreign producers of this input face a convex cost function and

maximize the present discounted value of profits, internalizing the effects of their production

decisions on prices through the Euler equation. We analyze a Markov Perfect Equilibrium,

in which strategies depend on a natural state variable, namely the level of capital in the

domestic economy.

Because of the durable nature of capital, investment-goods producers effectively com-

pete with the undepreciated stock of capital—equivalently, the secondary market for invest-

ment goods—, as well as among themselves, and choose the level of production trading off

current and future profits. By focusing on differentiable policy functions, we characterize

the optimal trade-off with a Generalized Euler Equation, which relates the markup to the

derivatives of the equilibrium policy functions. These derivatives encode each producer’s

strategic interactions with future selves and other competitors. We then express the equi-

librium price with a dynamic markup rule that provides insights on the role of the price

elasticity of investment and on a dynamic notion of marginal cost that includes a foregone

future markup.

To perform a quantitative exploration of the role of market power for the dynamics of

investment, we calibrate the model interpreting the foreign oligopoly as the semiconductor
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manufacturing industry. When the level of capital in the domestic economy is low, the

price of investment and the markup are high. Then, as the domestic economy accumulates

capital toward its steady state, prices and markups decline over time. This mechanism

generates a state-dependent capital adjustment cost, as endogenous markups contribute to

slow convergence to steady state and permanently distort the steady-state level of capital.

Notably, our quantification suggests that foregone future markups due to durability, a

typically unmeasured component of the marginal cost, account for the bulk of the steady-

state markup distortion.

Using our calibration, we disentangle the roles of different features of our framework,

such as the capital-accumulation model on the demand side and the technological assump-

tions on the supply side, for the evolution of markups. We show that the price elasticity

of investment demand is low when capital in the domestic economy is low, which accounts

for a markup that is initially high and then declines during the transition. Furthermore,

the presence of convex costs of producing investment goods strengthens producers’ market

power.

We also analyze a version of the model in which investment-goods producers commit

to future production plans. In this case, the internalization of competition with past

undepreciated production leads to markups that are higher in levels and do not decrease

as the economy grows. This comparison sheds light on the nature of time inconsistency in

our model and its macroeconomic implications.

We apply these insights on the transitional dynamics of the model to understand the

response of the economy to macroeconomic shocks. Specifically, we perform several ex-

periments in the calibrated model to reproduce salient features of the post-2020 global

recovery, which featured strong demand for durable goods. We proxy a rise in demand for

investment goods with a positive Total Factor Productivity (TFP) shock in the domestic

economy. One interpretation of this shock is the significant expansion in work from home,

which led to higher demand for computing and communication equipment.

We find that markups increase in response to the shock and then decrease over time,

consistent with empirical evidence on the profitability of semiconductor producers in the

recent recovery. Despite the endogenous increase in markups, however, the calibrated model

suggests that the equilibrium price increase is predominantly driven by increasing marginal

costs. In our baseline scenario, as the price of semiconductor increases by 20% as in the

data, the marginal cost increases by 17%.

We also analyze the effects of shocks to the production of investment goods and then

extend our model to stochastic, persistent productivity shocks and perform simulations

that confirm the main insights of our parsimonious baseline model in a richer business-
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cycle framework.

The experience of the recent recovery has motivated several policy interventions that

may reduce the concentration of some critical sectors, such as semiconductors, and ex-

pand their productive capacity. We use our model to simulate the effects of entry of one

additional large producer. Marginal costs decrease because the production of investment

goods is spread across more units, and, critically, long-run markup distortions decrease be-

cause of enhanced competition pressure. In contrast, we find that a relaxation of capacity

constraints that does not affect the number of producers has a smaller impact on equi-

librium prices. We conclude our policy analysis by characterizing the constrained-efficient

allocation in the presence of market power.

Finally, we analyze the interactions between investment-goods market power and en-

dogenous investment-specific technological progress due to learning by doing. When pro-

ducers internalize learning by doing, they have an incentive to accelerate the path of pro-

duction to reduce future cost, thereby reducing equilibrium markups early in the transition.

The rest of the paper is organized as follows. Section 2 discusses our contributions

to the literature. Section 3 presents the model environment. Section 4 characterizes the

dynamic oligopoly in investment goods. Section 5 presents the quantitative analysis of the

role of market power for capital accumulation. Section 6 discusses the effects of aggregate

shocks. Section 7 analyzes the effects of policy interventions. Section 8 extends the model

to feature learning by doing. Section 9 concludes.

2 Related Literature

This paper contributes to several strands of the literature. A growing body of work in

macroeconomics analyzes the aggregate effects of producer market power. De Loecker,

Eeckhout, and Unger (2020) study the evolution of markups over time in the US economy.

Edmond, Midrigan, and Xu (2023) provide a quantitative analysis of the social cost of

markups. While many studies focus on imperfect competition and price dynamics in output

markets (e.g., Mongey, 2021; Wang and Werning, 2022; Burstein, Carvalho, and Grassi,

2023), several recent paper focus on market power and firm granularity in input markets,

such as the labor market (e.g., Berger, Herkenhoff, and Mongey, 2022; Jarosch, Nimczik,

and Sorkin, 2023), and the credit market (Villa, 2023). Our contribution is to focus on

market power in the production of durable inputs such as investment goods. We develop a

framework to analyze the effects of market power on capital accumulation.

The literature on investment dynamics typically focuses on frictions on the demand side

of the market for investment goods, such as adjustment costs at the firm level (e.g., Cooper
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and Haltiwanger, 2006; Khan and Thomas, 2008; Baley and Blanco, 2021; Winberry, 2021)

or financing constraints (e.g., Buera and Shin, 2013; Moll, 2014; Lanteri and Rampini, 2023),

as well as on the role of firm heterogeneity. We explore a complementary approach and

analyze distortions stemming from the supply side of investment goods—namely, market

power of producers. Caplin and Leahy (2006) and Fiori (2012) analyze the supply side of

investment goods in models with fixed adjustment costs. Our focus on the production side

of investment-goods markets is related to the contribution of Bertolotti and Lanteri (2024),

which models endogenous product innovation, but without strategic interactions.

This paper also contributes to the literature on international trade, market structure,

and macroeconomic dynamics (e.g. Ghironi and Melitz, 2005; Atkeson and Burstein, 2008).

We focus on the role of market power in the production of durable goods. Since the work

of Eaton and Kortum (2001), the literature has emphasized the high degree of geographic

concentration in the global production of investment goods. Restuccia and Urrutia (2001)

and Hsieh and Klenow (2007) study the effects of investment prices on growth across

countries.4 Our paper contributes to this body of work by analyzing market power in

investment-goods markets as a source of friction in capital accumulation. Our quantitative

application on demand for investment goods and capacity constraints during the recent

recovery is related to the analyses of Comin, Johnson, and Jones (2023), Fornaro and

Romei (2023) and Darmouni and Sutherland (2024).

Our methodology combines a neoclassical growth model with a model of dynamic

oligopoly in durable-goods markets and we analyze a Markov Perfect Equilibrium (Maskin

and Tirole, 2001). A large theoretical literature in industrial organization investigates

monopoly pricing for durable goods with and without commitment (e.g., Coase, 1972;

Stokey, 1981; Bond and Samuelson, 1984; Kahn, 1986; Suslow, 1986). Several papers

leverage the insights of this literature to provide quantitative analyses of durable-good

oligopolies (e.g., Esteban and Shum, 2007; Goettler and Gordon, 2011). Fabinger, Itskhoki,

and Gopinath (2012) performs a theoretical analysis of the dynamics of durable-good prices

across multiple market structures (monopoly, oligopoly, and monopolistic competition) as-

suming a linear technology; in the oligopoly case, it shows that a Markov Perfect Equi-

librium must satisfy a Generalized Euler Equation similar to the one we obtain and then

focuses on analytical solutions assuming demand is also linear. To analyze the macroeco-

nomic role of market power for the dynamics of investment prices, we assume a convex cost

function, which we also endogenize with learning by doing. We formalize a dynamic markup

4Engel and Wang (2011) emphasizes the critical role of trade in durable goods for the comovement
between aggregate activity and trade flows. Burstein, Cravino, and Vogel (2013) focuses on the effects of
investment-goods imports on wages. Lanteri, Medina, and Tan (2023) analyzes the effects of trade shocks
on capital reallocation in a small open economy.
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rule in our main theoretical result and then perform a quantitative analysis of the model

focusing on semiconductors and equipment investment. Consistent with the insights of this

literature, our assumptions on discounting, depreciation, and convex costs of production

ensure that investment-goods producers exert market power, despite the durability of their

output. Following the approach of Villa (2023), which analyzes a financial-intermediary

oligopoly with dynamic demand, we solve the model using the Generalized Euler Equation,

a tool introduced in the literature on optimal fiscal policy (Klein, Krusell, and Ŕıos-Rull,

2008). We also consider the case of commitment to future production, which we solve re-

cursively using the multiplier on the investment Euler equation as a state variable (Marcet

and Marimon, 2019).

3 Model

In this section, we present our model of an economy that accumulates capital by importing

investment goods from a finite number of large producers. We then characterize the efficient

allocation. We focus on a deterministic model to sharpen the analysis and extend the model

to stochastic shocks in Section 6.3.

3.1 Investment Demand

We begin by describing the demand side of the market for investment goods. A determin-

istic open economy is populated by a representative household with utility function

∞∑
t=0

βtu(Ct),

where β ∈ (0, 1) denotes the discount factor, Ct is aggregate consumption, and uc > 0,

ucc ≤ 0, where subscripts denote first and second derivative respectively.

The budget constraint of the household reads

Ct + P I
t It +Bt = WtL+RK

t Kt−1 +RBt−1 +Dt,

where P I
t is the price of investment It, Bt are bonds that offer the exogenous world gross

interest rate R, Wt is the wage, L is a constant endowment of labor, RK
t denotes the rental

rate of capital Kt−1, and Dt are profits obtained from ownership of domestic firms. We

assume that the household is subject to the natural debt limit.
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Investment adds to the capital stock, which depreciates at rate δ:

Kt = (1− δ)Kt−1 + It. (1)

We assume that investment has to be non-negative and restrict attention to a region of the

parameter space where this constraint is not binding.

The first-order conditions of the utility maximization problem with respect to bonds

and investment are

1 = β
uc(Ct+1)

uc(Ct)
R (2)

P I
t = β

uc(Ct+1)

uc(Ct)

(
RK

t+1 + (1− δ)P I
t+1

)
. (3)

We assume that the interest rate satisfies R = β−1. Equation (2) then implies that con-

sumption converges to its steady-state value in one period.

A representative firm rents capital from the representative household and hires labor to

produce output with a constant-returns to scale production function:

Yt = F (Kt−1, L). (4)

The first-order conditions of the profit maximization problem are

FK(Kt−1, L) = RK
t (5)

FL(Kt−1, L) = Wt.

For notational convenience, we define f(Kt−1) ≡ F (Kt−1, L). Because of constant returns

to scale, the representative firm makes zero profits in equilibrium—i.e., Dt = 0.

By combining the household and firm optimality conditions (2), (3), and (5), we obtain

the following investment Euler equation that describes optimal capital accumulation in the

open economy:

P I
t = R−1

(
fk(Kt) + (1− δ)P I

t+1

)
. (6)

Equation (6) implicitly expresses the demand for investment goods It as a function of the

capital stock Kt−1 as well as current and future investment prices Pt and Pt+1.

We stress that our assumptions on consumers and ownership of the capital stock are

not critical for this condition. We can equivalently derive equation (6) assuming that firms

accumulate capital instead of households. Indeed, this condition holds also in a partial-

8



equilibrium model in which competitive firms with discount rate R−1 choose investment

optimally to maximize their present discounted value of profits.5

We also highlight that the open economy is small in the sense that the world interest

rate is exogenous. We make this assumption to focus squarely on the determination of

the price of investment goods, which is instead endogenous and affected by the path of

capital accumulation in the open economy. The exogeneity of the interest rate allows us to

abstract from the internalization of changes in the world real interest rate by investment-

goods producers, which is unlikely to be a force of first-order importance and would make

the analysis more cumbersome.

3.2 Investment-Goods Production

We now describe the supply side of the market for investment goods.

Assembly of investment. A perfectly competitive representative firm combines an

amount Qt of imported investment goods and an amount Xt of output good to assem-

ble domestic investment with a Leontief production function:

It = min

{
Qt

θ
,

Xt

1− θ

}
,

where θ ∈ [0, 1] denotes the share of imported investment goods, which trade at price Pt.

Profit maximization implies Qt

θ
= Xt

1−θ
and the equilibrium investment price must satisfy

P I
t = θPt + 1− θ, (7)

which implies that the investment assembling firm makes zero profits. It is thus immaterial

whether this technology is owned by domestic or foreign investors. Notice that our model

nests a standard small-open-economy neoclassical growth model when θ = 0.

Production of imported investment goods. We assume that there is an integer num-

ber N ≥ 1 of identical producers of a homogeneous good, which we refer to as “investment-

good producers.” Equivalently, there is a fixed cost of entering the industry and the level

of this cost is such that entry is profitable for N firms, but would yield negative profits

with a larger number of entrants. We analyze the effects of firm entry in Section 6. These

firms are owned by foreign investors.

The production of investment requires output goods. Specifically, each investment-

good producer has a cost function c(qt), where qt is the quantity produced at date t and

5We obtain the same investment Euler equation (6) in general equilibrium if the representative household
has linear preferences.
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we assume cq > 0 and cqq ≥ 0. In Section 8 we analyze a more general formulation of

the cost function with endogenous technological progress in the form of learning by doing,

which renders the marginal cost increasing in the quantity produced in the short run but

decreasing over time.

Static profits at date t are given by πt ≡ Ptqt−c(qt). We will consider several alternative

assumptions on competition and strategic interactions. Across all of these assumptions,

we maintain that the objective of investment-good producers is to maximize the present

discounted value of profits:
∞∑
t=0

R−tπt. (8)

Maintaining this assumption on the objective function, it is straightforward to consider

the case of domestic investment-goods producers. In that case, profits would be rebated

to domestic consumers and the allocation would be otherwise identical to the one we will

obtain. However, the objective function (8) may not coincide with the objective of the firm

owner—i.e., domestic households—when firms do not take prices as given.6

3.3 First Best

Before analyzing the effects of market power, we briefly introduce the competitive bench-

mark. In a competitive equilibrium without market power, investment-goods producers

choose a sequence of production levels {qt}∞t=0 to maximize (8) taking as given the sequence

of prices {Pt}∞t=0. Thus, the equilibrium price satisfies Pt = cq
(
θIt
N

)
and optimal capital

accumulation satisfies

θcq

(
θIt
N

)
+ 1− θ = R−1

(
fk(Kt) + (1− δ)

(
θcq

(
θIt+1

N

)
+ 1− θ

))
. (9)

If the cost function c is convex, the first-best allocation coincides with the outcome of a

standard model of capital accumulation with convex capital adjustment costs. Furthermore,

convexity implies that it is efficient to produce the same amount in all of the investment-

goods firms, which motivates our focus on symmetric equilibria in the remainder of the

paper.

This outcome is also the solution to the problem of a planner that maximizes household

welfare in the domestic economy subject to an aggregate resource constraint that includes

6For an analysis of common ownership in oligopoly in general equilibrium models, see Azar and Vives
(2021), which highlights that there is no simple objective function for firms that are not price takers and
share a common owner; solving this issue in our dynamic context with durable goods is beyond the scope
of this paper.
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the cost of producing investment goods. We formulate this problem in Appendix B.1.7

4 Investment-Goods Oligopoly

We now analyze the case of investment-goods producers that act as oligopolists. We de-

scribe the Markov Perfect Equilibrium, derive the optimality conditions of the investment-

goods producers, and formalize a dynamic markup rule. We then use this characterization

to relate markups and capital accumulation. Finally, we contrast this problem with the

case of commitment to future production.

4.1 Markov Perfect Equilibrium and Generalized Euler Equation

To focus on time-consistent decisions in the absence of commitment to future production

levels, we analyze a symmetric Markov Perfect Equilibrium with Cournot competition, in

which quantities produced are functions of a single natural state variable, the capital stock

in the domestic economy. To obtain a sharper characterization, we further restrict attention

to differentiable decision rules.

Combining equations (6) and (7) and using recursive notation, we can express the

investment Euler equation—i.e., the demand curve for investment goods—as follows:

P = R−1
(
θ−1fk(K

′) + (1− δ)P (K ′)
)
− κ, (10)

where κ ≡ θ−1(1− θ) (1−R−1(1− δ)).

For a generic investment-goods producer, we denote by q−(K) the quantity produced

by each other producer as a function of the capital stock K. Furthermore, investment-

good producers anticipate the equilibrium price function P (K ′) and the continuation value

function V (K ′), encoding the present discounted value of profits (8). Each producer solves

the following problem:

max
P,q,K′

Pq − c (q) +R−1V (K ′),

subject to the Euler equation (10) and the law of motion for capital

K ′ = (1− δ)K + θ−1 ((N − 1)q−(K) + q) , (11)

7In Appendix B.2 we also show that this planning problem coincides with one in which the planner is
subject to a participation constraint that requires investment-good producers to earn a minimum level of
profits, as long as there are lump-sum transfers between the domestic economy and foreign firms. We also
consider the “constrained efficiency” case without lump-sum transfers in Section 7.3.
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where we used the market-clearing condition (N − 1)q−(K) + q = Q = θI to express

aggregate production of the investment good.

We stress two important differences between this problem and several other macroeco-

nomic models of strategic interactions in pricing (e.g. Atkeson and Burstein, 2008). First,

the durability of investment in our framework implies that each firm competes with the

existing stock of undepreciated capital, as well as with the other N − 1 firms, as equation

(11) illustrates.8 Second, investment-good producers in our model are large players with

respect to aggregate variables and internalize the effects of their actions on the evolution

of the economy, including the aggregate price of investment.

The optimality condition for the production level can be represented as the following

Generalized Euler Equation (GEE):

θP − θcq(q) + qR−1
(
θ−1fkk(K

′) + (1− δ)Pk(K
′)
)
+R−1Vk(K

′) = 0. (12)

This is a functional equation that involves the derivative of the future price with respect

to the capital stock, reflecting the fact that investment-good producers cannot commit

to future actions, but internalize the effect of current production on future equilibrium

outcomes.

In a symmetric equilibrium, the maximum value of this problem coincides with V (K).

Thus, the envelope condition reads:

Vk(K) = −θ

(
1− δ +

(
N − 1

N

)
Ik(K)

)(
P − cq

(
θI(K)

N

))
, (13)

where I(K) denotes aggregate investment and we have used the fact that in a symmetric

equilibrium each firm produces a fraction 1/N of the total amount of imported investment

goods—i.e., q(K) = q−(K) = θI(K)
N

. The term Ik(K) encodes the strategic interactions

among oligopolistic firms, which, in a Markov Perfect Equilibrium, are mediated by changes

in the state variable: Each firm internalizes the effect of its current production on future

competitors’ production through changes in the level of capital in the open economy.

To gain intuition on the GEE (12), consider a marginal increase in future capital K ′—

and the associated increase in the level of production q. This increase in K ′ has three

effects on the present discounted value of profits. First, it yields additional profits equal to

the current markup P − cq(q) for the share θ of oligopolistic input in investment.

8As a relevant example of the importance of dynamic competition with the undepreciated stock in the
case of semiconductor producers, in 2022 TSMC warned investors that the past high volume of production
during 2020-21 would lead to lower demand in the future. Source: https://asia.nikkei.com/Business/
Tech/Semiconductors/Chip-giant-TSMC-warns-of-excessive-inventory-at-clients.

12

https://asia.nikkei.com/Business/Tech/Semiconductors/Chip-giant-TSMC-warns-of-excessive-inventory-at-clients
https://asia.nikkei.com/Business/Tech/Semiconductors/Chip-giant-TSMC-warns-of-excessive-inventory-at-clients


Second, an increase in K ′ moves the market equilibrium along the demand curve,

reducing the market-clearing price. The corresponding effect on profits—i.e., the term

qR−1 (θ−1fkk(K
′) + (1− δ)Pk(K

′))—is encoded in the derivative of the right-hand side of

the investment Euler equation, and thus depends on changes in the marginal product of

capital and in the future value of capital.

Third, an increase in K ′ shifts downward the future residual demand curve, with an

effect on future profits given by R−1Vk(K
′), which the envelope condition (13) relates to

the future markup. This last term highlights that oligopolistic firms producing a durable

good internalize that their future production will compete with the undepreciated fraction

(1 − δ) of the current production, as well as with their competitors’ output, as indicated

by the term
(
N−1
N

)
Ik(K) in equation (13).

Overall, the GEE (12) describes the optimal trade-off between current and future

markup. We summarize the equilibrium conditions of the Markov Perfect Equilibrium

in the following definition.

Definition 1 A Symmetric Markov Perfect Equilibrium is a set of functions map-

ping the capital stock K to the present discounted value of profits for each oligopolist V (K),

the quantity produced q(K), the associated level of aggregate investment I(K) = Nq(K)
θ

, and

the price P (K) that satisfy the investment Euler equation (10), the capital accumulation

equation (11), the Generalized Euler Equation (12), and the envelope condition (13).

We leverage this definition to solve the model numerically in Section 5.

4.2 Dynamic Markup Rule and Static Markup

We now characterize the equilibrium price and express it in terms of a markup and an

appropriate notion of marginal cost. Formally, we prove the following result.

Proposition 1 In a Symmetric Markov Perfect Equilibrium, the price satisfies the follow-

ing markup rule:

P =
N

N − η︸ ︷︷ ︸
Dynamic Markup

·
(
cq(q)−R−1θ−1Vk(K

′)
)︸ ︷︷ ︸

Dynamic Marginal Cost

, (14)

where η is the inverse price elasticity of investment demand, defined as

η ≡ −Q

P

dP

dQ
= −Q

P
θ−1R−1

(
θ−1fkk(K

′) + (1− δ)Pk(K
′)
)
, (15)

and the marginal value Vk(K) is given by equation (13).
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To prove this result, we first rewrite the GEE (12) as follows:

P

1 +
θ−1q

P
·R−1

(
θ−1fkk(K

′) + (1− δ)Pk(K
′)
)︸ ︷︷ ︸

dP
dK′

 = cq(q)−R−1θ−1Vk(K
′).

We then observe that dP
dQ

= dP
dK′

dK′

dQ
= θ−1 dP

dK′ , as one additional unit of output of the

oligopolistic industry translates into θ−1 additional unit of future capital. Thus, using the

definition of η in equation (15) and the fact that q = Q
N
, we get equation (14), which

expresses the price as a dynamic markup rule.

The rule calls for applying the Cournot oligopoly markup N
N−η

to a dynamic notion of

marginal cost. This notion of marginal cost is composed of two terms. First, we have the

“static” marginal cost cq(q), which is the physical cost of producing one additional unit at

the current date. Second, because of the dynamic nature of the oligopolist problem, we

have the discounted future marginal value, which encodes the loss in future profit due to

the fact that one additional unit will shift residual demand in the future.

We define the dynamic markup rate as a share of the dynamic marginal cost, µD ≡
N

N−η
− 1 = η

N−η
, where the superscript D stands for “dynamic.” We highlight that the

inverse elasticity η is an equilibrium object that varies with the level of aggregate capital

K, and so does the markup rate µD. Using the envelope condition (13), we can also express

the static markup rate µS as follows:

µS ≡ P − cq(q)

cq(q)
= µD

(
1− NR−1θ−1Vk(K

′)

ηcq(q)

)
. (16)

This static markup is the object that is typically estimated in empirical analyses of market

power. Proposition 1 allows us to decompose this measured markup into a Cournot markup

term that depends only on market structure and demand elasticity and an “unmeasured

cost” encoded in the future marginal continuation value. Specifically, in equation (16), the

term in parenthesis on the right-hand side adjusts the dynamic markup to account for the

effect of future competition on the dynamic marginal cost.

We stress that the dynamic markup rule of Proposition 1 (equation (14)) is robust to an

important generalization of our model, namely the introduction of endogenous technological

progress in investment production due to learning by doing. The addition of this channel

only modifies the expression for the envelope term, as we explain in detail in Section 8.
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4.3 Prices and Markups Around Steady State

We now obtain some analytical insights on the effect of the level of capital on the equilibrium

price and on the role of the production function f—i.e., the demand side of the model—for

this price mapping. We investigate these relationships quantitatively in Section 5.3.

Let us define the equilibrium law of motion of capital, g(K) ≡ K(1 − δ) + I(K). We

proceed under the regularity condition that a stable steady-state level of capital exists and

capital converges to it monotonically from below (at least locally). In a neighborhood of

the steady state, we then have 0 ≤ gk(K) = 1− δ+ Ik(K) < 1. We verify this condition in

our numerical solution. A steady-state level of capital and price satisfy

(θP + 1− θ) (R− 1 + δ) = fk(K).

Differentiating the Euler equation (6) with respect to K, we obtain

Pk(Kt−1) =
(
R−1θ−1fkk(Kt) +R−1(1− δ)Pk(Kt)

)
gk(Kt−1) (17)

=
∞∑
s=0

R−s−1(1− δ)s
(
Πt−1+s

τ=t−1gk(Kτ )
)
θ−1fkk(Kt+s),

which expresses the slope of the equilibrium price function as a present discounted value

of the second derivatives of the production function moving forward in time along the

equilibrium capital accumulation path.

In steady state, equation (17) becomes

Pk(K) =
R−1θ−1fkk(K)gk(K)

1−R−1(1− δ)gk(K)
. (18)

The numerator of (18) is negative by concavity of the production function. The denomina-

tor is positive. Hence the equilibrium price is decreasing in the level of capital, Pk < 0, in a

neighborhood of a steady state. This result, together with fkk < 0, ensures that the inverse

elasticity η is positive in a neighborhood of a steady state. Therefore, the properties of the

production function—which determines investment demand in our model—are critical for

both price dynamics and market power.

Furthermore, in steady state we can use the envelope condition (13) together with

equation (16) to relate the static markup to the demand elasticity and investment policy

function as follows:

µS =
µD

1− N
N−η

R−1(1− δ +
(
N−1
N

)
Ik(K))

.
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4.4 Capital Level and Price Elasticity of Investment

We now investigate the relation between the level of capital and the price elasticity of

investment, which is a key determinant of the markup on new investment goods. Whereas

it is necessary to examine this relation numerically in our model, we can make analytical

progress in a simplified setting.

Consider the limiting case of full depreciation, δ = 1, and assume there is a monopoly,

i.e. N = 1 and that θ = 1. Moreover, assume the economy has an endowment of capital

K0 that is not purchased from the monopolist. This endowed capital acts as stand-in for

undepreciated capital from the past in our model with partial depreciation and shifts the

demand for investment.

In this case, taking logs of the investment Euler equation, we can write

log(P ) = − log(R) + log (fk(K0 + I)) .

Thus, the inverse price elasticity is

η = −fkk(K0 + I)I

fk(K0 + I)
.

Assume further that the production function is Cobb-Douglas, f(K) = AKα with α ∈
(0, 1), as we will maintain in our quantitative analysis. Then,

η = (1− α)
I

K0 + I
,

which is decreasing in K0 for a given level of quantity demanded I. Hence, investment

demand is less elastic with respect to the price for low K0 and the optimal markup is

decreasing in K0.

More in general, the sign of the derivative of the inverse elasticity with respect to K0

depends on the the first three derivatives of the production function:

∂η

∂K0

= I

(
(fkk)

2 − fkkkfk
(fk)2

)
,

and is negative when f 2
kk − fkkkfk < 0. Intuitively, the first derivative of the production

function appears in the Euler equation, which is the demand schedule for investment goods.

Thus, the second derivative determines the price elasticity. Finally, the third derivative is a

determinant of the slope of the elasticity with respect to the predetermined level of capital.

Leveraging the analytical insights in the simplified setting of this section, we analyze
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quantitatively the relationship between capital level and markup in Section 5.4.

4.5 Commitment to Future Production

So far we have proceeded under the assumption that investment-good producers cannot

commit to future actions. In the literature on durable-good pricing it is well understood that

assumptions on commitment may have important consequences for prices and markups.

Hence, to analyze the role of commitment to a future production plan in our model, we

now consider the following setup.

At t = 0, each investment-good producer commits to an infinite sequence of production

levels {qt}∞t=0 taking as given a sequence of competitors’ production levels {q−,t}∞t=0. We

then impose symmetry across investment-goods producers in equilibrium. We interpret this

setup as the limiting case of a world with long-lived managers that formulate production

plans and face high costs of deviating from them, for instance because of large costs of

changing the production capacity.9

The oligopolist’s maximization problem is

max
{Pt,qt,Kt}∞t=0

∞∑
t=0

R−t (Ptqt − c (qt))

subject to the demand schedule or, using the terminology of Ramsey-optimal policy, “im-

plementability constraint”

Pt = R−1
(
θ−1fk(Kt) + (1− δ)Pt+1

)
− κ

for t = 0, 1, .., with multiplier R−tγt, and the law of motion

Kt = (1− δ)Kt−1 + θ−1 ((N − 1)q−,t + qt) .

The first-order conditions of this problem are:

qt − γt + γt−1(1− δ) = 0 (19)

θPt − θcq(qt) + γtR
−1θ−1fkk(Kt)−R−1θ(1− δ) (Pt+1 − cq(qt+1)) = 0, (20)

with initial condition on the multiplier γ−1 = 0. These optimality conditions trade off

9In this formulation, we assume that investment-goods producers cannot collude because of coordination
costs that we do not explicitly model. In Appendix B.3 we consider the case of collusion with commitment,
in which case the objective is to maximize the present discounted value of total profits. The two problems
coincide if N = 1.
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present and future profits, similar to the GEE (12). However, we highlight two important

differences between the dynamics under commitment and the ones we obtained in a Markov

Perfect Equilibrium.

First, equation (19) reveals the nature of the time inconsistency of the optimal pro-

duction plan under commitment. A higher price at t relaxes the past implementability

constraint allowing a higher price at t − 1. However, at t = 0, the producer is not bound

by any past commitment. Then, over time, past commitments, encoded in the multiplier

γt, accumulate, thereby making it increasingly costly to reduce prices. In contrast, in a

Markov Perfect Equilibrium, firms always disregard the competition with their past selves

and only internalize future equilibrium decision rules.

Second, because under commitment we assume that firms take as given the whole path

of competitors’ decisions, they do not internalize the effect of their production levels on

future competitors’ production, which accounts for the term Ik(K
′), which is present in the

envelope condition (13) but absent in equation (20).

We define a symmetric equilibrium with commitment as follows.

Definition 2 A Symmetric Equilibrium with Commitment is a sequence of allo-

cations, prices, and multipliers on the investment Euler equation {Kt, qt, It, Pt, γt}∞t=0 that

satisfy the investment Euler equation, the capital accumulation equation, and the oligopoly

first-order conditions (19) and (20).

As in the case without commitment, we can use the optimality conditions (19) and (20)

to express the price in terms of the marginal cost and a markup rate. To this end, we first

rewrite equation (20) as follows:

Pt

1 +
θ−1 (qt + (1− δ)γt−1)

Pt

·R−1θ−1fkk(Kt)︸ ︷︷ ︸
dPt
dKt

 = cq(qt) +R−1(1− δ) (Pt+1 − cq(qt+1)) .

We then observe that dPt

dQt
= θ−1 dPt

dKt
. Thus, defining the inverse price elasticity of demand

ηFC ≡ −Q

P

dPt

dQt

= −Q

P
R−1θ−2fkk(Kt), (21)

we obtain the following formal result.

Proposition 2 In a Symmetric Equilibrium with Commitment, the price satisfies the fol-
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lowing markup rule:

Pt =
N

N −
(
1 + N(1−δ)γt−1

Qt

)
ηFC︸ ︷︷ ︸

Dynamic Markup

·
(
cq(qt) +R−1(1− δ) (Pt+1 − cq(qt+1))

)
,︸ ︷︷ ︸

Dynamic Marginal Cost

(22)

where the inverse price elasticity ηFC is given by equation (21).

Equation (22) expresses the price as a dynamic markup rule that is both forward looking

and backward looking. In particular, the commitment problem features the backward-

looking term N(1−δ)γt−1

Qt
that was not present in the Markov Perfect Equilibrium. This term

captures the fact that the firm internalizes that a marginal increase in price at time t has

an effect on the demand schedule at time t− 1. Notice also that the appropriate notion of

marginal cost is composed of two terms. First, we have the “static” marginal cost cq(qt),

which is the cost of producing one additional unit at the current date. Second, because

of the dynamic nature of the oligopolist problem, we have the discounted future markup.

Similarly to the case without commitment, we can also define the dynamic markup rate

under commitment as a fraction of the marginal cost.

5 Quantitative Analysis

In this section, we leverage our equilibrium definitions and characterization to solve the

model numerically. We calibrate the model and explore the implications of market power in

investment-goods markets for capital accumulation. We focus on the dynamics of markups

along the transition path to steady state in the domestic economy and disentangle the roles

of demand, technology, and commitment.

5.1 Solution Method

We begin this section by briefly discussing our global solution method. Appendix C.1

provides additional details.

Markov Perfect Equilibrium. We approximate the Markov Perfect Equilibrium (Defi-

nition 1) using a version of the time-iteration algorithm to approximate the policy functions

I(K) and P (K). Specifically, we guess a polynomial approximation for I(K). Given this

candidate policy function, we obtain an associated guess for P (K) by doing time iteration

on equation (6), recursively solving for the left-hand side on a grid for K and then plugging

the obtained price function in the right-hand side. Once we obtain a converged price func-

tion, we use it to numerically approximate the derivative Pk(K). Then, to update I(K),
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we apply time iteration to the GEE (12) substituting in it the envelope condition (13) with

an approximation of the derivative Ik(K). We repeat these steps until all policy functions

converge.

Commitment. To approximate the equilibrium with commitment (Definition 2), we solve

the model recursively by adding the multiplier on the past investment Euler equation as

a state variable. We then use a time-iteration algorithm on equations (19) and (20) to

approximate the policy functions I(K, γ) and γ′(K, γ) with polynomials.

5.2 Calibration

We proceed to describe our choices of functional forms and parameter values, which we

report in Table 1. The length of a period is one year. We assume that the production

function in the domestic economy is Cobb-Douglas: F (Kt−1, L) ≡ AKα
t−1L

1−α and nor-

malize the labor endowment L = 1. We interpret capital as the stock of nonresidential

private equipment in the US. We set the capital share in the production function and the

depreciation rate to match the ratio of the stock of equipment to GDP and the average

depreciation rate of equipment using data from the NIPA Asset Tables. In Appendix C.3

we provide our main results based on an alternative calibration, which refers to a broader

definition of capital, including structures, as in standard real-business-cycle models.

We calibrate the share of imported investment goods in total investment using US

data on investment-goods prices as follows. We first deflate the Producer Price Index of

semiconductors and the Producer Price Index of machinery and equipment using the GDP

deflator. We fit a linear trend in both series during 2012-2019. We then match the pass-

through of the cumulative increase in the real price of semiconductors to the real price of

machinery and equipment during 2019-2023. Relative to trend, we observe a 20% increase

in the real price of semiconductors and a 7% increase in the real price of machinery and

equipment (Figure 1). In Appendix C.4 we provide our main results based on an alternative

calibration, which interprets the imported oligopolistic input more narrowly as wafers, a

key component in the production of semiconductors, for which we can use detailed data on

production and unit margins. We analyze these data in Appendix A.2.

Given our focus on symmetric equilibrium, we set the number of foreign investment-

goods producers to approximate the highly concentrated market structure in semiconductor

manufacturing, where the two largest players (TSMC and Samsung) account for over 70%

of sales. We then experiment with a change in market structure in Section 7.1.

We assume that the cost function to produce investment goods is quadratic: c(q) =

c1q +
c2
2
q2. We view this functional form assumption as a parsimonious approximation of
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Table 1: Parameters Values

Parameter Symbol Value

Investment Demand Discount Factor β 0.96

Depreciation δ 0.1354

Capital Share α 0.0645

Oligopolistic Capital Share θ 0.366

Total Factor Productivity A 2.743

Investment Supply Number of Producers N 3

Marginal Cost (Intercept) c1 0.6369

Marginal Cost (Slope) c2 22

Notes: The table reports the parameter values used in the quantitative analysis.

more general technologies with decreasing returns to scale. In Appendix C.5 we explicitly

consider a richer specification of the cost function that approximates capacity constraints

that become active in response to large increases in production relative to steady state.

We set the intercept c1 to normalize the marginal cost of investment to one in the first-

best steady state. To quantify the degree of decreasing returns to scale, we calibrate c2

so that the ratio of profits to sales in steady state closely matches the ratio of operating

income (EBIT) to sales in balance-sheet data for the major semiconductor manufacturers.

Specifically, using ORBIS data on TSMC and Samsung, we obtain a ratio of approximately

30%. This calibration strategy implies that the steady-state elasticity of the marginal cost

with respect to the quantity produced is equal to 0.35%.

5.3 Capital Accumulation, Prices, and Markups

Figure 2 illustrates the main properties of the Markov Perfect Equilibrium. The left panel

portrays the law of motion of aggregate capital and the right panel the equilibrium price

(solid line) and the marginal cost (dashed line) as functions of the level of capital.

In the Markov Perfect Equilibrium, the steady-state level of capital is approximately

5% lower than in first best (red circle) because of the presence of a markup, which induces

a long-run distortion. The steady-state static markup rate is approximately equal to 16%.

Moreover, as the domestic economy grows toward its steady state, the marginal cost

is initially high to accommodate a high level of investment, and then declines during the

transition. The price of investment also declines, and more so than the marginal cost, which

implies that the static markup is decreasing in the level of capital. As a consequence, capital

accumulation is slower in the presence of market power than in the first-best allocation.
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Weaker competition among investment-goods suppliers dampens capital accumulation and

growth.

Figure 2: Markov Perfect Equilibrium: Capital Accumulation, Price, and Marginal Cost
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Notes: The figure displays capital accumulation and prices in the Markov Perfect Equilibrium (MPE).

Panel (a) illustrates the law of motion of capital in the domestic economy. The solid line represents next-

period capital (y-axis) as a function of current capital (x-axis). Its intersection with the 45-degree dashed

line identifies the steady-state MPE. The red circle marks the equilibrium capital stock in the first-best

steady state. Panel (b) displays price P (solid line) and marginal cost cq(q) (dashed line) as functions of

the aggregate capital stock. The red circle marks the equilibrium price in the first-best steady state.

Figure 3 displays the dynamics of markups. We distinguish between the static markup

µS
t (solid line) and the dynamic markup µD

t , which we defined in Section 4.2. The static

markup is larger than the dynamic markup because it has to cover the part of the dynamic

marginal cost due to competition with the future undepreciated capital stock. Notably, this

dynamic component of the marginal cost accounts for the bulk of the steady-state distortion.

Furthermore, we find that both markup rates decline as aggregate capital increases.

Quantitatively, our results imply that when the level of capital is approximately half of

its steady-state target, the price of investment and the static markup rate are approximately

35% and 45% higher than in steady state, respectively. In the next subsections we dissect

the roles of different forces in our model for these results on capital accumulation, prices,

and market power.
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Figure 3: Static and Dynamic Markup Rates
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Notes: The figure illustrates the static markup rate µS (solid line) and the dynamic markup rate µD in

the Markov Perfect Equilibrium as functions of the aggregate capital stock K.

5.4 Role of Demand

We first analyze the role of the demand side—i.e., the neoclassical growth model in the

domestic economy—for the dynamics of markups displayed in Figure 3. Given our calibra-

tion, investment demand in the domestic economy is highly elastic. In steady state, the

inverse elasticity η is approximately equal to 0.12, which implies a dynamic markup rate

µD = 0.045.

Consistent with the analytical characterization of Section 4.4, investment demand is less

elastic when the level of capital is low and becomes more elastic as the domestic economy

approaches its steady state. For instance, when the level of capital is approximately half

of its steady-state value, the inverse elasticity is approximately equal to 0.35. Accordingly,

Figure 3 shows that investment-good producers extract a higher dynamic markup early in

the transition and the dynamic markup rate is decreasing in the level of capital.

Furthermore, a low level of capital, combined with low elasticity, implies that investment-

goods producers can extract rents from the domestic economy for a relatively long time,

while capital accumulates toward the steady state and demand is relatively inelastic. These

large anticipated markups decline as the economy approaches the steady state, which ac-

counts for the decreasing gap between µS and µD in the figure, consistent with equation

(16). Thus, both the price elasticity and the anticipation of future markups (the dynamic

component of the marginal cost) contribute to generate a larger distortion for lower levels

of capital. This mechanism is related to the one that arises in the presence of dynamic

23



oligopoly in the credit market, which Villa (2023) analyzes.

To buttress these findings on the role of demand forces, we develop a formal decompo-

sition of markups along the equilibrium capital-accumulation path, leveraging our charac-

terization of equilibrium. We reformulate the GEE (12) along the transition path in terms

of future sequences of three objects: (i) quantities produced, normalized by the current

level of the marginal cost; (ii) slopes of the demand function

dPt

dQt

≡ θ−1R−1
(
θ−1fkk(Kt) + (1− δ)Pk(Kt)

)
;

and (iii) an endogenous discount factor, which we define recursively as follows: Bt,t = 1,

Bt,t+1 = R−1(1− δ+(N−1
N

)Ik(Kt)), and Bt,t+s = Bt,t+s−1R
−1(1− δ+(N−1

N
)Ik(Kt+s−1)). We

then express the static markup rate—as follows:

µS
t = −

∞∑
s=0

Bt,t+s
qt+s

cq(qt)

dPt+s

dQt+s

. (23)

To quantify the role of each factor for the dynamics of markups, we compute counterfac-

tual markups using steady-state values for two of the three determinants and letting the

remaining one vary according to the equilibrium path.

Figure 4 shows that rotations in the demand curve—consistent with an increasing

elasticity—largely account for the steep decline in markups. Moreover, the quantity pro-

duced declines over time because investment is initially high and then decreases as the

domestic economy approaches steady state. This path amplifies the decline in markups

over time. Finally, variations in the discounting term Bt,t+s play a negligible role.

5.5 Role of Investment-good Technology

Next, we investigate the role of our assumptions on the investment-good technology. We

find that the slope of the marginal-cost function c2—a proxy for the tightness of capacity

constraints in our main calibration—plays an important role in sustaining the equilibrium

level of markups and the associated profitability of investment-goods producers.

Given our calibrated value c2 = 22, the steady-state static markup rate equals 0.16 and

the ratio of profits to sales equals 0.29, which is our empirical target for semiconductor

manufacturers. To assess the role of this parameter, we compute the Markov Perfect

Equilibrium in counterfactual economies with different values—and re-calibrate c1 so that

all economies have the same level of capital and prices in the first-best steady state. When

the marginal cost is flatter (c2 = 10), the static markup rate equals 0.11 and the profit-
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Figure 4: Static Markup Decomposition
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Notes: The figure displays a decomposition of the evolution of the static markup rate µS
t = (Pt − cq,t)/cq,t

over the transition of the economy to steady state in the Markov Perfect Equilibrium. The figure disen-

tangles the variation in the static markup rate (solid line) driven by: (i) quantities qt+s/cq,t produced by

each oligopolist, divided by the marginal cost (dashed line); (ii) derivatives of inverse demand with respect

to aggregate quantity dPt+s/dQt+s (dash-dotted line); and (iii) discount factor Bt,t+s defined in the text

(dotted line).

sales ratio equals 0.17. With a steeper marginal cost (c2 = 35), the static markup rate

equals 0.2 and the profit-to-sales ratio equals 0.4. Accordingly, equilibrium distortions in

the steady-state capital level are increasing in the value of c2.

This quantitative finding is consistent with the related theoretical literature in Indus-

trial Organization (e.g. Stokey, 1981), which stresses that a durable-good monopolist with

a constant marginal cost and without commitment behaves similarly to a competitive pro-

ducer (Coase, 1972), whereas an increasing marginal cost leads to larger distortions due to

market power.

Absent commitment, at every date an investment-good producer disregards the negative

effect of a high current production on past prices. If buyers are sufficiently patient, they

wait for a low equilibrium price, and thus the equilibrium quickly converges to one with

a high volume of production and a competitive price. However, this outcome requires the

producer to be willing to quickly produce a large quantity. An increasing marginal cost (or

a capacity constraint) ensures that it is not optimal for producers to scale up production

quickly. This force sustains higher markups and an effective price discrimination across

periods. Consistent with this insight, in Appendix C.5 we find that capacity constraints

reinforce the quantitative role of market power for price dynamics in response to shocks.
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We also perform a comparative static of the equilibrium with respect to the depreciation

rate δ, an inverse measure of the durability of the investment good. A positive depreciation

rate is a further departure of our model from the theoretical model that Stokey (1981)

analyzes. Durability affects market power through multiple channels. On the one hand,

a more durable good implies that competition between current and future production is

stronger. On the other hand, higher durability also affects the level of investment demand,

potentially reducing the volume of production. In our calibrated model, we find that as

the depreciation rate increases in a neighborhood of the baseline value, the steady-state

markup rate increases slightly.

5.6 Role of Commitment

Finally, we investigate the role of our assumptions about commitment to future production.

To this end, we contrast the Markov Perfect Equilibrium with the case of full commitment

(Section 4.5). Figure 5 displays the transitional dynamics to the steady-state equilibrium

for aggregate capital, multiplier on the investment Euler equation (γt), price of investment,

and static markup.10 The figure compares the Markov Perfect Equilibrium (solid lines)

with the case of commitment (dashed lines).

First, we notice that in the presence of commitment the price of investment and the

markup are substantially higher than in the Markov Perfect Equilibrium. As a result,

capital converges to a lower steady-state level. In steady state, the static markup rate

is approximately 130% with commitment and 16% in the Markov Perfect Equilibrium.

Accordingly, in the presence of commitment, the welfare cost of oligopoly relative to first

best equals 2.3% of permanent consumption, whereas in the Markov Perfect Equilibrium

it equals 0.3% of permanent consumption.

Second, by comparing the transition dynamics in the two regimes, we uncover the source

of time inconsistency of the commitment plan. Under full commitment, at the beginning

of the transition, when the multiplier is zero, each oligopolist has an incentive to set a

relatively high level of production and, accordingly, a lower price than in the long run. As

a consequence the domestic economy experiences an investment boom and overshoots its

long-run level of capital. Over time, as the promise-keeping multiplier accumulates, the

producer internalizes the effects of current prices on past prices through the investment

Euler equation. Thus, markups grow, and the economy reverts to its steady-state level of

capital. To confirm the crucial role of this multiplier, we perform again a decomposition of

the difference between price and marginal cost as in Section 5.4. We report the results in

10We assume that the initial capital level equals half of the first-best steady state and that the initial
multiplier on the investment Euler equation equals zero.
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Appendix C.2.

These dynamics display a sharp contrast with the outcome in the absence of commit-

ment, which, as we have seen, features decreasing price and markup as capital accumulates

to the steady state.

Figure 5: Role of Commitment
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Notes: The figure compares the transition of the economy to the steady-state equilibrium without commit-

ment (Markov Perfect Equilibrium, solid lines) and with full commitment (dashed lines). In both settings,

we assume that the initial level of capital equals half of the first-best steady-state value. Panels (a), (b),

(c), and (d) plot the transitions of aggregate capital Kt−1, demand schedule multiplier γt, price Pt, and

static markup rate µS
t , respectively.
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6 Shocks, Marginal Costs, and Markups

In this section, we analyze the effects of aggregate shocks, such as the ones experienced in

the post-2020 global recovery. We first simulate an increase in the demand for investment

goods, which accounts for an increase in both investment-goods prices and quantities pro-

duced. We leverage our analyses of the main forces in the model to quantify the roles of

increasing marginal costs—akin to capacity constraints—and market power for the transi-

tional dynamics of investment and prices. We then simulate the effects of an investment-cost

shock. Finally, we analyze a stochastic version of our model with persistent business-cycle

shocks.

6.1 Investment-Demand Shock

We now use the model to gain insight into the dynamics of the post-2020 recovery, when a

rise in demand for durable goods—and thus for semiconductors—led to a dramatic increase

in the price of equipment. Two factors likely contributed to this pattern. First, producers

of semiconductors as well as other manufacturers overall experienced capacity constraints

and other sources of increasing marginal costs. Second, these producers could exert market

power and extract profits from the period of high demand. The calibrated model allows us

to decompose these channels.

To this end, we simulate a positive unexpected shock to the demand for investment

goods. Given our parsimonious model of the demand side—which features a production

function with equipment as the only variable input—we proxy this increase in investment

demand with a permanent increase in the level of TFP in the domestic economy. We

calibrate this shock to match a 20% increase in the price of semiconductors during 2019-

2023.

Figure 6 displays the aggregate dynamics in the model. The increase in productivity

stimulates capital accumulation toward a higher steady-state level. Hence, the analysis of

the main forces in the model of Section 5 is highly relevant to understand the results. On

impact, the price of investment goods jumps and overshoots its long-run value. Quantita-

tively, price dynamics are predominantly accounted for by changes in the marginal cost,

which increases by approximately 17% to accommodate the initially high level of production

of investment goods. We also verify that the first-best equilibrium features similar price

dynamics in response to the same shock, which confirms our finding on the predominant

role of marginal costs.11

11In the first-best equilibrium the increase in aggregate capital is 0.3 percentage points larger than in
the Markov Perfect Equilibrium.

28



At the same time, in the Markov Perfect Equilibrium, markups also increase on impact,

although moderately, by approximately 2.5 percentage points. Consistent with our analysis

of the transition to steady state in Section 5, the inverse elasticity of demand is initially

high, as the domestic economy desires to exploit its high marginal return from capital, which

justifies the higher markup. Then, markups decline as the domestic economy converges to

the new steady state.

Overall, this analysis shows that in spite of the presence of market power and endogenous

markups, the increase in the post-2020 relative price of equipment is driven to a large extent

by technological features, such as increasing marginal costs. We obtain similar results in two

alternative calibrations of the model: a broader definition of capital including structures,

as in standard business-cycle models (Appendix C.3); and a narrower interpretation of

oligopolistic investment goods as wafers (Appendix C.4).

Motivated by this finding, we further investigate the role of capacity constraints in the

semiconductor industry in Appendix C.5. To this end, we generalize our specification of the

cost function to allow for changes in the slope of marginal costs in response to large shocks.

In the presence of capacity constraints, the increase in markups accounts for approximately

one fourth of the equilibrium price increase after a demand shock. This finding confirms

the importance of the convexity of the cost function for the determination of prices and

markups in our model.

Because of decreasing returns to scale, our baseline model predicts that average—i.e.,

per unit sold—profits of investment-goods producers also increase significantly in response

to the shock, despite a moderate increase in markups. All of these patterns are consistent

with empirical evidence on production levels and profitability of semiconductor manufac-

turers during the post-2020 recovery, which we document in Appendix A. Specifically, we

show that there was positive comovement of prices, quantities, and profit margins both

using a broader notion of semiconductors and using more detailed data on a narrower cat-

egory, namely wafers (for which we have more detailed data and perform a separate model

calibration in Appendix C.4). This positive comovement of prices and production volumes

confirms the important role of demand shocks in the recovery.

Finally, we analyze the effects of the investment-demand shock when investment-goods

producers have full commitment. We report the results in Appendix C.6. In the presence

of full commitment, markups decline in response to the shock. This scenario confirms that

increasing marginal costs play a major role for the increase in the price of equipment.
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Figure 6: Investment-Demand Shock
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

increase in TFP in the Markov Perfect Equilibrium. Panel (a) plots the exogenous change in TFP At.

Panel (b) plots the transition of aggregate capital Kt−1 to the new steady state in the domestic economy.

Panel (c) plots the transition of the price Pt (solid line) and producers’ marginal cost cq,t (dashed line)

to the new steady state. Panel (d) plots the transition of the static markup rate µS
t (solid line) and of

the dynamic markup rate µD
t (dashed line) to the new steady-state. We assume that the shock occurs at

t = 0, that the economy is in the initial steady state at t = −1, and that agents have perfect foresight of

the evolution of all variables after the unexpected shock occurs.
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6.2 Investment-Cost Shock

Next, we investigate the effects of a shock that hits the production side of investment goods

in the model. Specifically, we assume that the cost function is Ztc(qjt), with Zt = 1 in the

initial steady state. We then calibrate an increase in Zt to match the same equilibrium

price increase as in the previous subsection.

Figure 7 displays the aggregate effects of this shock in the model. The increase in the

cost of producing investment goods induces a decline in the level of capital in the domestic

economy. As the price of investment goods increases, markups decline, suggesting that the

increase in cost reduces profitability at the margin. Nevertheless, the model predicts that

average profits increase. Overall, we find that the demand shock better accounts for the

empirical dynamics in the semiconductor industry during the post-2020 recovery, because

both prices and quantities produced increased.

We also consider the contemporaneous occurrence of an investment-demand shock and

an investment-cost shock. Because both shocks have a positive effect on prices, shocks of

a smaller magnitude are needed to account for the large increase in the price of semicon-

ductors we observe in the data. Most notably, in the presence of both shocks the model

can quantitatively account for both the price increase and the increase in the volume of

production of semiconductors during the post-2020 recovery.

6.3 Business Cycles

Our model provides a microfoundation for capital adjustment costs and thus contributes

broadly to the quantitative literature on investment over the business cycle, beyond the

focus on the post-2020 recovery. To explore the business-cycle implications of our theory, we

now extend our model to include stochastic productivity shocks in the domestic economy.

We assume that the production function is Yt = AtK
α
t−1L

1−α and that productivity

follows an AR(1) process in logs: log(At) = (1− ρ)µA + ρ log(At−1) + εt. We parameterize

the autocorrelation and standard deviation of innovations following the calibration of TFP

shocks for the US economy in Khan and Thomas (2013)—i.e., ρ = 0.909 and σε = 0.014.

We provide all derivations of the stochastic model in Appendix B.4. In the presence of

stochastic shocks, the GEE of a generic investment-goods producer becomes:

θP − θcq(q) + qR−1E
[
θ−1fkk(A

′, K ′) + (1− δ)Pk(K
′, s′)|s

]
+R−1E[Vk(K

′, s′)|s] = 0,
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Figure 7: Investment-Cost Shock

0 2 4 6 8 10 12

-10

-5

0

5

10

15

20

25

30

35

(a) Cost Function Shock

0 2 4 6 8 10 12

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) Capital

0 2 4 6 8 10 12

0

5

10

15

20

25

(c) Price and Marginal Cost

0 2 4 6 8 10 12

-2.5

-2

-1.5

-1

-0.5

0

0.5

(d) Static and Dynamic Markups

Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

25% increase in the cost function coefficient Z. Panel (a) plots the exogenous change in Zt. Panel (b) plots

the transition of aggregate capital Kt−1 to the new steady state in the domestic economy. Panels (c) plots

the transition of the price Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new steady

state. Panel (d) plots the transition of static markup rate µS
t (solid line) and of the dynamic markup rate

µD
t (dashed line) to the new steady state. We assume that the shock occurs at t = 0, that the economy is

in the initial steady state at t = −1, and that agents have perfect foresight of the evolution of all variables

after the unexpected shock occurs.

whereas the optimality conditions with commitment become:

qt − γt + γt−1(1− δ) = 0

θPt − θcq(qt) + γtR
−1Et

[
θ−1fkk(At+1, Kt)

]
−R−1θ(1− δ)Et [(Pt+1 − cq(qt+1))] = 0,32



Table 2: Stochastic Productivity: Business Cycle Moments

FB MPE FC

Mean I 0.135 0.128 0.095

Mean P 1.000 1.137 2.070

Mean Markup 0 0.160 1.323

St. Dev. I/St. Dev. Y 2.438 2.252 2.864

St. Dev. P 0.008 0.008 0.004

St. Dev. Markup 0 0.001 0.009

Corr. Y and I 0.970 0.977 0.957

Corr. Y and P 0.971 0.974 0.941

Corr. Y and Markup 0 0.924 -0.973

Notes: The table reports several moments related to investment, the price of the oligopolistic investment
good, and the static markup rate, from a long a simulation of the model with stochastic productivity
in the domestic economy. The first column refers to the first-best allocation, the second column to the
Markov Perfect Equilibrium, and the third column to the case of full commitment. Standard deviations
and correlations are computed for the logarithm of the variables, except for the markup rate, and the
simulated data are HP-filtered with a smoothing coefficient equal to 6.25 for annual frequency.

Table 2 reports several business-cycle moments from a long simulation of the stochastic

model. The stochastic model confirms the main insights that we have highlighted in the

previous section. Prices and markups are higher on average in the presence of commitment.

The model predicts a moderate business-cycle volatility and high procyclicality of prices

and markups in response to productivity shocks, consistent with our findings on the effect

of a permanent investment-demand shock.

In Appendix C.7, we extend the stochastic model to feature both TFP shocks and cost

shocks in the production of investment goods, calibrated using data on equipment prices.

The cost shock counters the procyclicality of the price of equipment and adds significant

volatility to investment.

7 Policy Interventions

In this section, we analyze policy interventions to expand capacity and address market

power of investment-good producers. In so doing, we aim to shed light on the likely effects

of policies such as the US CHIPS and Science Act. We first consider entry subsidies in

our model. We then analyze production subsidies. Finally, we formulate and solve a

constrained planning problem. We stress that the geographic location of the production

of investment goods is immaterial in the model and that production could take place in
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the domestic economy; our policy experiments are particularly relevant to understand US

policy interventions targeting foreign firms, such as TSMC and Samsung, that carry out

some operations in the US.12

7.1 Subsidizing Entry

Our findings on the implications of market power for capital accumulation motivate us to

analyze the effects of a change in the number of producers. To this end, we first simulate an

increase in the number of competitors from N = 3 to N = 4 and compute the equilibrium

transitional dynamics after this regime change in the Markov Perfect Equilibrium.

We interpret this experiment as the outcome of a policy intervention that reduces the

perceived entry cost for investment-goods producers. To determine the range of the implicit

subsidy, we assume that the size of entry costs—which we did not model explicitly—would

support N = 3 as the equilibrium market structure. Given the discreteness of the number

of firms, entry costs are in a range such that at least three and at most four firms have a

positive present discounted value of profits net of entry costs. Given this range for entry

costs, to induce entry of one additional firm, a flow subsidy paid to each investment-good

producer in every period would have an aggregate cost ranging between zero and 0.26% of

steady-state consumption in the domestic economy.

Figure 8 displays the transition of the capital stock (left panel) as well as price and

marginal cost of investment (right panel). As the number of producers increases, total

capacity expands and competition rises. Given any level of aggregate investment, a larger

production capacity reduces individual quantities, thus reducing the marginal cost. This

contributes to a decline in the price, inducing more capital accumulation in the domes-

tic economy. Furthermore, over time, higher competition depresses markups, and thus

the equilibrium price drops by approximately 60% more than the marginal cost. In turn,

this price decline further stimulates capital accumulation. The welfare gain in the domes-

tic economy, without accounting for subsidies, equals approximately 0.25% of permanent

consumption.

Remarkably, increasing the number of competitors from N = 3 to N = 4 almost closes

the difference in price and capital level between the new Markov Perfect Equilibrium steady

state (N = 4) and the first-best steady state associated with N = 3. The first-best steady

state associated with N = 4 features an even higher level of capital and a lower price,

because a larger number of producers reduces the marginal cost of investment. Nonetheless,

going from N = 3 to N = 4 reduces by approximately one third the steady-state gaps in

12See, for instance, the operations of TSMC Arizona (https://www.tsmc.com/static/abouttsmcaz/index.htm).
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price and capital level between the Markov Perfect Equilibrium and the first-best allocation.

These results highlight the quantitative importance of the long-run distortion imposed

by market power in investment goods. A caveat in interpreting the short-run results of this

experiment, however, is that our focus on symmetric equilibrium implies that new entrants

have the same level of technology as incumbents. The cost of this policy in the real world is

likely larger to the extent that it should account for a transition period over which entrants

learn the frontier technology. In Section 8 we introduce learning by doing in our model,

although in symmetric equilibrium.

We also simulate this increase in competition in the case of full commitment and report

the results in Appendix C.6. In this case, we obtain an even larger effect of entry on

markups, prices, and capital accumulation.

Figure 8: Increase in the Number of Investment-Goods Producers
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Notes: The figure illustrates the response of the economy in the Markov Perfect Equilibrium to an unantic-

ipated and permanent increase in the number of investment-goods producers from N = 3 to N = 4. Panel

(a) plots the transition of domestic economy’s aggregate capital stock Kt−1 to the new steady state. Panel

(b) plots the transition of the investment price Pt (solid line) and producers’ marginal cost cq,t (dashed

line) to the new steady state. We assume that the shock occurs at t = 0, that the economy is in the initial

steady state at t = −1, and that agents have perfect foresight of the evolution of all variables after the

unexpected shock occurs.

35



7.2 Subsidizing Capacity

Next, we investigate an alternative scenario in which we engineer a reduction in the marginal

cost of the same magnitude by flattening the cost function instead of increasing the number

of firms. Specifically, we approximate the effects of a relaxation of capacity constraints with

a reduction in the value of c2, thus reducing the cost convexity, and focus on the Markov

Perfect Equilibrium.

We can interpret this counterfactual as the result of a cost subsidy τ , such that investment-

goods producers perceive an effective cost function c(q)(1−τ(q)). The function τ is designed

to obtain the desired flattening of the marginal cost. Quantitatively, the subsidy rate is

approximately equal to 0.085 in steady state and it implies a larger total fiscal cost than

the entry subsidy of the previous subsection.13

Figure 9 displays the results. Although we target a decline in the marginal cost of the

same magnitude as in the previous subsection, the comparison of this figure with Figure

8 reveals that only the change in market structure generates an additional price reduction

due to the endogenous compression in markups.

Quantitatively, given a 7.4 percent reduction in the steady-state marginal cost, the

investment subsidy determines a price decline equal to 7.9 percent. In contrast, increasing

the number of competitors from N = 3 to N = 4 decreases the price by 11.9 percent. In

terms of welfare, the increase in the number of producers leads to a permanent-consumption

gain that is approximately 50% larger than the one implied by the counterfactual in which

we flatten the cost curve. This analysis shows that the design of policy interventions

aimed at expanding capacity in the semiconductor manufacturing industry should take

into account the effect of these policies on the market structure.

7.3 Constrained Efficiency

We conclude our policy analysis by formulating and solving a constrained planning problem.

We see this analysis as a first step toward a macroeconomic theory of optimal industrial

policy in durable-good industries with market power.

We consider a benevolent planner that operates N investment-goods producers to

maximize welfare in the domestic economy, subject to the participation constraint that

investment-goods producers must achieve a minimum level of profits and there are no

lump-sum transfers between domestic economy and foreign firms. The planner is also sub-

ject to the capital accumulation equation (1) and the investment Euler equation (6), has

13We verify in Appendix C.8 that the function τ is approximately linear in the quantity produced
around the steady state. The per-period aggregate cost of the subsidy would equal 1.3% of steady-state
consumption.
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Figure 9: Relaxation of Capacity Constraints
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Notes: The figure illustrates the response of the economy in the Markov Perfect Equilibrium to an unantic-

ipated and permanent decline in the slope of the marginal cost function from c2 = 22 to c2 = 16.8. Panel

(a) plots the transition of the aggregate capital stock Kt−1 to the new steady state. Panel (b) plots the

transition of the investment price Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new

steady state. We assume that the shock occurs at t = 0, that the economy is in the initial steady state at

t = −1, and that agents have perfect foresight of the evolution of all variables after the unexpected shock

occurs.

full commitment, and thus chooses an infinite sequence of production levels and prices.

We show in Appendix B.2 that the constrained-efficient allocation satisfies the following

optimality conditions:

νt = ηθ (Pt − cq(qt))− uc(C) (θPt + 1− θ) (24)

Nqt (η − uc(C)) = Γt − (1− δ)Γt−1 (25)

νt = R−1
(
(1− δ)νt+1 − uc(C)fk(Kt)− θ−1Γtfkk(Kt)

)
, (26)

where νt denotes the multiplier on the capital accumulation equation, η the multiplier on

investment-good producers’ participation constraint, and Γt the multiplier on the invest-

ment Euler equation.

As equation (24) reveals, the planner’s shadow value of capital balances the need to

deliver profits through markups with the incentive to increase welfare by increasing pro-

duction and thus reducing investment prices. Furthermore, as in the case of oligopoly with

commitment (Section 4.5), the path of production leads to an accumulation of multipliers
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on past investment Euler equations through equation (25). Similarly, equation (26) dictates

the optimal evolution of markups over time and thus replaces equation (20).

We solve for the constrained-efficient allocation assuming that the initial condition is the

steady state of the Markov Perfect Equilibrium under our baseline calibration. We illustrate

the solution in Appendix C.9. We find that, in the short run, the planner increases the level

of production of investment goods and reduces the price, which leads to a protracted period

of positive capital accumulation and high output in the domestic economy, consistent with

our experiments with simple policy interventions to expand capacity.

In the long run, however, the accumulation in the multipliers on past investment Eu-

ler equations advises the planner to increase prices and, in so doing, deliver profits to

investment-good producers and ensure that their participation constraint is satisfied. Ac-

cordingly, the level of capital in the constrained-efficient steady state is lower than in the

Markov Perfect Equilibrium. This critical role of the multiplier Γt as a state variable rein-

forces the relevance of our theoretical and quantitative analysis of the role of commitment.

8 Learning by Doing

Our analysis has assumed that the technology to produce investment-goods is exogenous.

We now generalize our model to allow for endogenous technological progress in the form

of learning by doing (Arrow, 1962). A large literature analyzes technological progress that

reduces the cost of investment goods (e.g., Greenwood, Hercowitz, and Krusell, 1997) and a

growing literature focuses on learning-by-doing spillovers specifically in the semiconductor

industry (e.g., Irwin and Klenow, 1994; Goldberg, Juhász, Lane, Lo Forte, and Thurk,

2024; Miao, 2024). Our model allows us to analyze the interactions between market power

and learning by doing for investment-goods producers.

To this end, we now assume that the cost function is c(q,K) with cq > 0, cqq ≥ 0, and,

critically, ck < 0. We assume that production costs decrease as past accumulated sales of

the industry—parsimoniously approximated by the aggregate capital stock K—increase.

This formulation implies both internal effects of production on future technology as well

as spillovers on other producers.

We focus on the Markov Perfect Equilibrium and, thanks to our formulation of learning

by doing, there is again a single state variable, the aggregate capital stock. The optimality

conditions and the dynamic markup rule of Proposition 1 are as in Section 4, with the

following modifications. First the marginal cost of production is now given by the partial
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derivative cq(q,K). Second, the Envelope condition reads as follows:

Vk(K) = −θ

(
1− δ +

(
N − 1

N

)
Ik(K)

)(
P − cq

(
θI(K)

N

))
− ck(q,K), (27)

where the new term is the last partial derivative on the right-hand side, which denotes

the internalized reduction in cost due to the learning by doing associated with higher

production. Because ck(q,K) is negative, a higher aggregate capital stock is associated with

higher productivity, and thus a higher marginal value, for investment-goods producers.

As a result, the trade-off associated with producing an additional unit of future cap-

ital is now richer. As in the case without learning by doing, higher production implies

higher current profits at the expense of future profits. Furthermore, it now implies faster

technological progress, which reduces future costs.

We parameterize the cost function as follows:

c(q,K) ≡
(
c1q + c2q

2
)(

1 + I
(
K ≤ K̃

) 1

χ

(
1− K

K̃

)χ)
, (28)

where K̃ denotes an upper bound for the level of aggregate capital such that learning by

doing is active below this upper bound; I
(
K ≤ K̃

)
is an indicator function, which is equal

to 1 when aggregate capital is lower than the upper bound and 0 otherwise and χ > 0 is a

parameter the determines the speed of learning by doing.14

We calibrate χ = 1.8 so that when the aggregate capital stock doubles in size (from 0.5 to

1 approximately), the marginal cost of production decreases by 14%, an intermediate value

in the range of empirical estimates for learning by doing in semiconductor manufacturing.

We set K̃ = 1.3, which implies that the upper bound for learning by doing is sufficiently

large that it is not reached in equilibrium in our simulations.

In Figure 10, we illustrate our main findings on this extended version of the model,

comparing the case in which firms internalize learning by doing (solid lines) with the case

in which the cost function evolves according to equation (28), but firms do not internalize

the effects of their production on future cost functions—i.e., the last term in equation (27)

is not present—(dashed lines). The left panel displays the law of motion for aggregate

capital. Although the path of capital accumulation is similar in the two scenarios, when

learning by doing is internalized, the level of investment in the domestic economy is higher

and the economy reaches a steady state with a 2% higher level of capital.

14In the case of semiconductors, where technological improvements manifest to a large extent in the size
of semiconductors, there is a physical lower bound for the size of components that justifies the assumption
of an upper bound for learning (e.g. Miao, 2024). In other applications, it is possible to assume that K̃ is
a large number to obtain long-lived effects of learning in the model.
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Figure 10: Capital Accumulation and Markups with Learning by Doing
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Notes: The figure displays capital accumulation and markups in the Markov Perfect Equilibrium (MPE)

with learning by doing. Solid lines refer to the case in which firms internalize learning by doing. Dashed lines

refer to the case in which the cost function evolves according to equation (28), but firms do not internalize

the effects of their production on future cost functions. In panel (a), the two lines represent next-period

capital (y-axis) as a function of current capital (x-axis). The intersection with the 45-degree dashed line

identifies the steady-state MPE. Panel (b) displays static markups µS as function of the aggregate capital

stock.

To explain this finding, the right panel shows that investment-good producers optimally

charge a lower markup when they internalize learning by doing, because they have an

incentive to increase production and reduce future costs. Higher production is associated

with a lower price of investment goods. This incentive is stronger early in the transition

when there is more scope for learning. Hence, the internalization of learning by doing

flattens the static markup rate as a function of aggregate capital.

We highlight that the transitional dynamics in this version of the model feature an

endogenous decline in the price of investment goods, consistent with empirical evidence,

both due to a decline in the marginal cost and due to a decline in the endogenous markup.

Appendix C.10 illustrates the response of the economy to a positive shock to demand

for investment goods in this version of the model. Learning by doing does not significantly

affect our quantitative conclusion that the increase in the price of investment is predom-

inantly driven by the response of marginal costs. Indeed, the flattening of markups with

respect to the aggregate capital stock illustrated in Figure 10 contributes to dampen the

increase in markups in response to the shock.
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In the same appendix, we also analyze a policy intervention to increase the number of

investment-goods producers in the presence of learning by doing. In this case, the policy

generates a larger steady-state reduction in marginal cost (8.4%) and price (12.3%) relative

to the case without learning by doing.

9 Conclusion

We have developed an open-economy model with market power in the global production of

investment goods. Our analysis was originally motivated by the post-2020 global recovery,

which featured a large increase in demand for inputs produced by a highly concentrated

industry, such as semiconductors. This aggregate shock fueled a sharp increase in the

price of durable goods and contributed to overall inflation during the recovery. Beyond

this specific episode, our general model allows us to analyze the macroeconomic effects of

market power in durable input markets.

In our framework, the price of investment goods equals the sum of a marginal cost—

which can be affected by capacity constraints—and an endogenous markup, which depends

critically on the level of demand for investment goods. When investment-goods producers

behave as oligopolists without commitment, the markup rises in response to positive shocks

to investment demand, thereby generating a microfounded aggregate capital adjustment

cost.

When we calibrate the model to the post-2020 recovery, we find that increasing marginal

costs likely played a major role in the increase in equipment prices, leaving a more moderate

role for markup hikes, despite an overall increase in profits. By allowing this decomposition

of the roles of technology and market power for price dynamics, our model contributes to

the debate on the so-called “greedflation” in the recovery.

The model also provides a useful laboratory to analyze policy interventions that aim to

increase the productive capacity in the global semiconductors industry. Our counterfactual

analyses show that interventions that increase the number of producers may be particularly

effective in stimulating capital accumulation because they expand aggregate capacity and

reduce the long-run distortion induced by market power.

In future work, the characterization of equilibrium markups in our model will also prove

useful to analyze richer economies with multiple types of capital goods and multiple sectors

with heterogeneous market structures, thus closing the gap between models with durable

goods and recent empirical analyses of aggregate trends in market power.

41



References

Arrow, K. J. (1962): “The Economic Implications of Learning by Doing,” The Review

of Economic Studies, 29(3), 155–173.

Atkeson, A., and A. Burstein (2008): “Pricing-to-market, trade costs, and interna-

tional relative prices,” American Economic Review, 98(5), 1998–2031.

Azar, J., and X. Vives (2021): “General Equilibrium Oligopoly and Ownership Struc-

ture,” Econometrica, 89(3), 999–1048.

Baley, I., and A. Blanco (2021): “Aggregate Dynamics in Lumpy Economies,” Econo-

metrica, 89(3), 1235–1264.

Berger, D., K. Herkenhoff, and S. Mongey (2022): “Labor Market Power,” Amer-

ican Economic Review, 112(4), 1147–1193.

Bertolotti, F., and A. Lanteri (2024): “Capital Replacement and Innovation Dy-

namics,” CEPR Discussion Paper 18869.

Bond, E. W., and L. Samuelson (1984): “Durable Good Monopolies with Rational

Expectations and Replacement Sales,” The RAND Journal of Economics, 15(3), 336–

345.

Buera, F. J., and Y. Shin (2013): “Financial Frictions and the Persistence of History,”

Journal of Political Economy, 121(2).

Burstein, A., V. M. Carvalho, and B. Grassi (2023): “Bottom-up Markup Fluctu-

ations,” NBER Working Paper 27958.

Burstein, A., J. Cravino, and J. Vogel (2013): “Importing Skill-Biased Technology,”

American Economic Journal: Macroeconomics, 5(2), 32–71.

Caplin, A., and J. Leahy (2006): “Equilibrium in a Durable Goods Market with Lumpy

Adjustment,” Journal of Economic Theory, 128, 187–213.

Coase, R. H. (1972): “Durability and Monopoly,” The Journal of Law and Economics,

15(1), 143–149.

Comin, D. A., R. C. Johnson, and C. J. Jones (2023): “Supply Chain Constraints

and Inflation,” NBER Working Paper 31179.

Cooper, R. W., and J. C. Haltiwanger (2006): “On the Nature of Capital Adjust-

ment Costs,” Review of Economic Studies, 73, 611–633.

Darmouni, O., and A. Sutherland (2024): “Investment when new capital is hard to

find,” Journal of Financial Economics, 154.

De Loecker, J., J. Eeckhout, and G. Unger (2020): “The Rise of Market Power

42



and the Macroeconomic Implications,” The Quarterly Journal of Economics, 135(2),

561–644.

Eaton, J., and S. Kortum (2001): “Trade in Capital Goods,” European Economic

Review, 45, 1195–1235.

Edmond, C., V. Midrigan, and D. Y. Xu (2023): “How Costly are Markups?,” Journal

of Political Economy, 131(7).

Engel, C., and J. Wang (2011): “International Trade in Durable Goods: Understanding

Volatility, Cyclicality, and Elasticities,” Journal of International Economics, 83(1), 37–

52.

Esteban, S., and M. Shum (2007): “Durable-goods oligopoly with secondary markets:

the case of automobiles,” RAND Journal of Economics, 38(2), 332–354.

Fabinger, M., O. Itskhoki, and G. Gopinath (2012): “Price Dynamics for Durable

Goods,” Chapter 3 of Michal Fabinger, Essays on Trade and Imperfectly Competitive

Markets, Doctoral Dissertation, Harvard University.

Fiori, G. (2012): “Lumpiness, Capital Adjustment Costs and Investment Dynamics,”

Journal of Monetary Economics, 58(4), 371–382.

Fornaro, L., and F. Romei (2023): “Monetary Policy in an Unbalanced Global Econ-

omy,” Working Paper.

Ghironi, F., and M. Melitz (2005): “International Trade and Macroeconomic Dynamics

with Heterogeneous Firms,” The Quarterly Journal of Economics, 120(3), 865–915.

Goettler, R. L., and B. R. Gordon (2011): “Does AMD Spur Intel to Innovate

More?,” Journal of Political Economy, 119(6).

Goldberg, P., R. Juhász, N. Lane, G. Lo Forte, and J. Thurk (2024): “Industrial

Policy in the Global Semiconductor Sector,” NBER Working Paper 32651.

Greenwood, J., Z. Hercowitz, and P. Krusell (1997): “Long-Run Implications of

Investment-Specific Technological Change,” American Economic Review, 87(3), 342–362.

Hsieh, C.-T., and P. J. Klenow (2007): “Relative Prices and Relative Prosperity,”

American Economic Review, 97(3), 562–585.

Irwin, D. A., and P. J. Klenow (1994): “Learning-by-Doing Spillovers in the Semi-

conductor Industry,” Journal of Political Economy, 102(6), 1200–1227.

Jarosch, G., J. Nimczik, and I. Sorkin (2023): “Granular Search, Market Structure,

and Wages,” The Review of Economic Studies, Forthcoming.

Kahn, C. (1986): “The Durable Good Monopolist and Consistency with Increasing Cost,”

Econometrica, 54(2), 275–294.

43



Khan, A., and J. K. Thomas (2008): “Idiosyncratic Shocks and the Role of Noncon-

vexities in Plant and Aggregate Investment Dynamics,” Econometrica, 76(2), 395–436.

(2013): “Credit Shocks and Aggregate Fluctuations in an Economy with Produc-

tion Heterogeneity,” Journal of Political Economy, 121(6), 1055–1107.
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SUPPLEMENTAL APPENDIX

A Additional Empirical Evidence

A.1 Dynamics of Equipment and Semiconductors Investment

In this subsection we further analyze the dynamics of US investment during the post-2020

recovery and connect them with the evolution of equipment and semiconductors prices

presented in Figure 1.

We first re-examine price dynamics by analyzing the evolution of the level of equipment

and semiconductors real price-indexes (Figure A1). Both prices were on a declining long-

run trend before the 2020 recession, when both series rose not only in deviation from their

trend but, remarkably, in absolute terms too.

Figure A1: Semiconductor and Equipment Price Dynamics in Levels
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Notes:The figure displays the US Producer Price Index of Semiconductors (panel a, FRED series

PCU334413334413A) and the US Producer Price Index of Machinery and Equipment (panel b, FRED

series WPU11) during 2010-2023. Both series are normalized to equal one in 2017 and deflated using the US

GDP deflator (FRED series A191RD3A086NBEA).

Next, we turn to investment quantities. Figure A2a illustrates real industrial equipment

investment in the US. Its dynamics suggest that investment demand has been strong during

the post-2020 recovery. After the sharp 7.6% decline between 2019 and 2020, the series

displays a robust recovery in both 2021 (+10% relative to 2020) and 2022 (+16% relative to

2020). Consistent with such strong recovery, in 2021 real investment in industrial equipment

was approximately 5% higher than its long-run trend estimated over 2000-2019. Therefore,

an increase in real quantities accompanies the 7% rise in the real price of machinery and

equipment documented in Figure 1.
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Figure A2b illustrates similar dynamics for semiconductors, a key component of in-

dustrial equipment. We proxy real investment in semiconductors by real semiconductors

billings to Americas obtained from the Semiconductors Industry Association.15 We deflate

the nominal value of billings by the US Semiconductors Producer Price Index (FRED series

PCU334413334413A). Consistent with the rise of investment in industrial equipment in the

post-2020 recovery, semiconductors demand increased by approximately 40% between 2020

and 2022, being 45% above its 2000-2019 trend in 2022. Therefore, also for semiconductors

both quantity and real price rose after 2020.

Finally, we observe similar dynamics for US real investment in Information Technology

equipment, tightly linked to demand for semiconductors, as well as in worldwide semicon-

ductors billings.

Figure A2: Equipment and Semiconductors Investment
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Notes: Panel (a) displays real US Industrial Equipment Investment, computed as nominal US Indus-

trial Equipment Investment (FRED series A680RC1Q027SBEA) divided by US Equipment Price Deflator

(FRED series Y033RD3Q086SBEA). Panel (b) displays Semiconductors Billings to Americas provided by the

Semiconductors Industry Association, converted to real 2017 US dollars by dividing the series by the US

Semiconductors Producers Price Index (FRED series PCU334413334413A).

A.2 Quantities, Prices, and Profitability in Wafer Production

In this subsection, we zoom in on quantity and price dynamics of wafer foundries. Wafers

are a crucial component of chips manufacturing for which we can precisely measure phys-

ical quantities produced and unit prices. To this end, we rely on Taiwan’s Ministry of

Economic Affairs data on yearly production and sales of three detailed product categories

15The geographical granularity of the data does now allow us to focus specifically on the US, which,
however, should count for the vast majority of recorded orders to Americas.
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of wafer foundry: 12 inches and above (300mm); 8 inches (200mm); and 6 inches and below

(150mm).16.

Wafer production is very concentrated globally. Taiwan Semiconductors Manufacturing

Corporation (TSMC), whose plants are largely based in Taiwan, is the only player among

the largest 10 producers in terms of installed capacity in all foundry categories (300mm,

200mm, 150mm).17 Therefore, focusing on Taiwan provides an accurate account of the

dynamics of global production volumes and unit prices.

We start by analyzing the dynamics of physical production volumes in Figure A3a, dis-

tinguishing by wafer size. After a decline in production in 2019, which narrative industry

accounts link to a decline in global demand, production volumes display a fast rise in 2020

and during the post-2020 recovery. This is consistent with strong demand for semicon-

ductors and overall higher final demand for manufacturing goods. Sales volumes display

similar dynamics.

Figure A3: Volumes of Production by Wafer Size
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Notes: Panel (a) displays the dynamics of wafers production volumes in Taiwan, sourced from Taiwan’s

Ministry of Economic Affairs.The solid (dashed) line refers to wafer size smaller or equal than 200mm

(300mm) and it is computed as the sum of production volumes for product codes 2611110 and 2611120

(2611130 for the dashed line). Panel (b) represents the dynamics of average real unit prices (solid line),

average real unit operating profit (dashed line), and total real operating profit (dashed-dotted line) for

wafer foundry in Taiwan. All series are expressed in percent deviation from their level in 2019.

Next, we analyze the dynamics of average unit prices, which we obtain by dividing

production values (in New Taiwan Dollars) by physical volumes. We covert average unit

16We downloaded the data from https://dmz26.moea.gov.tw in April 2024. The relevant product
codes are 2611110, 2611120, and 2611130.

17As of December 2020, TSMC had the second-largest installed capacity (15% of global capacity) after
Samsung (21%) for 300mm wafers; it had the largest installed capacity (10%) for 200mm wafers; and it
had 3% of installed capacity for 150mm wafers. Source: https://www.design-reuse.com/news/49551/

tsmc-top-10-capacity-three-wafer-size-categories.html.
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prices to real US Dollars using FRED’s exchange rate series (DEXTAUS) and US GDP de-

flator. The solid line in Figure A3b displays average unit price dynamics around 2020,

expressed in percent deviation from 2019 level. The real price of wafers increases dramati-

cally starting from 2020, with a cumulative change of approximately +60% between 2019

and 2023. Therefore, wafers replicate the positive co-movement of prices and quantities

already documented for US industrial equipment and semiconductors.

Finally, we investigate the evolution of real unit margins and profits. We combine

production volume data with balance-sheet variables for TSMC and Mediatek, the other

Taiwanese foundry, from Orbis. We compute real average unit margins as Operating Profits

(EBIT)—i.e., the difference between total sales and cost of goods sold plus depreciation

and amortization—deflated by the US GDP deflator and divided by sales volumes data

from Taiwan’s Ministry of Economic Affairs.

In Figure A3b the dashed line depicts real unit margins in percent deviation from their

2019 level. The cumulative increase over 2023-2019 equals approximately 110%, which is

almost twice as large as the increase in unit prices. The relative magnitude of the price

and unit margin effect is consistent with the model predictions in response to a demand

shock, which we study in Appendix C.4 for an alternative calibration of the model where

wafers represent the oligopolistic investment good.

Moreover, in Figure A3b the dashed-dotted line represents the evolution of aggregate

real Operating Profits for TSMC and Mediatek, in percent deviation from 2019. Total

profits result from the combination of changes in average unit margin (dashed line) and

volumes sold (Figure A3a). As quantities also increase markedly during the post-2020

recovery, the increase in total operating profits exceeds the increase in average unit margins.

This finding is also qualitatively consistent with the model’s response to a positive demand

shock analyzed in Appendix C.4.

Our analysis combines balance sheet data of individual companies with country-wide

administrative data on production volumes. To address potential concerns of this approach,

we first note that TSMC and Mediatek account for virtually all wafer production capacity

in Taiwan. Therefore, government’s statistics should provide an accurate account of TSMC

and Mediatek production volumes. Second, to validate our approach we compute an al-

ternative measure of average unit prices dividing TSMC’s and Mediatek’s total sales from

Orbis by production volumes from Taiwan’s Ministry of Economic Affairs. We then verify

that the dynamics of this alternative measure are similar to those displayed in Figure A3b

(solid line) for average unit prices computed using administrative data only.
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B Additional Model Derivations

B.1 First-Best Planning Problem

In this subsection we present the first-best planning problem. The social planner chooses

sequences {Ct, Bt, qjt, Kt} for j = 1, .., N and t = 0, ..,∞ to maximize household utility (1)

subject to the resource constraint

Ct +
N∑
j=1

c(qjt) +Xt +Bt = f(Kt−1) + β−1Bt−1,

with multiplier βtλt, where Xt = θ−1(1− θ)
∑N

j=1 qjt and where we used R = β−1, as well

as the capital accumulation equation

Kt = θ−1

N∑
j=1

qjt + (1− δ)Kt−1,

with multiplier βtνt.

The optimality conditions are

uc(Ct) = λt

λt = λt+1

λt

(
cq(qjt) + θ−1(1− θ)

)
= θ−1νt

νt = β (λt+1fk(Kt−1) + (1− δ)νt+1) ,

which imply symmetric production qjt = qt =
θIt
N

for all j if cqq > 0, and can be combined

to obtain equation (9):

θcq

(
θIt
N

)
+ 1− θ = R−1

(
fk(Kt) + (1− δ)

(
θcq

(
θIt+1

N

)
+ 1− θ

))
.

B.2 Constrained Efficiency

In this subsection we formulate a more general version of the planning problem and char-

acterize the efficient allocation given the friction of market power in investment goods.

The planning problem nests first best as a special case, when there are lump-sum transfers

between consumer and producers.

We assume that participation of investment-goods producers requires that the present

discounted value of profits has to be at least equal to the present discounted value of
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a perpetuity that pays π > 0, a fixed cost of operation. We can interpret this present

discounted value as an entry cost, which justifies the market structure with N producers.

With lump-sum transfers across agents. The budget constraint in the domestic econ-

omy reads:

Ct + (θPt + 1− θ) θ−1

N∑
j=1

qj,t +Bt = f(Kt−1) +RBt−1 −
N∑
j=1

Tj,t.

The participation constraint is

∞∑
t=0

R−t (Ptqjt − c(qjt) + Tj,t − π) ≥ 0.

We can recover the first-best plan by setting Tj,t = π − (Ptqjt − c(qjt)). Substituting this

transfer in the budget constraint, we obtain the resource constraint:

Ct +
N∑
j=1

c(qj,t) +Nπ + (1− θ) θ−1

N∑
j=1

qj,t +Bt = f(Kt−1) +RBt−1,

which coincides with the one in Appendix B.1, except for the fixed cost π, which does not

affect the first-order conditions of the planning problem.

Without lump-sum transfer across agents. In the absence of lump-sum transfers

(Tj,t = 0), we obtain the “constrained-efficient” allocation of Section 7.3 because redis-

tribution between the domestic economy and investment-good producers is only possible

through prices. The allocation must satisfy the Euler equation, which we assume the

planner cannot distort. The planner’s objective is again welfare in the domestic economy:

∞∑
t=0

R−tu(Ct). (B1)

The maximization is subject to the participation constraint

∞∑
t=0

R−t (Ptqjt − c(qjt)− π) ,≥ 0,

for all j, with multiplier ηj, the resource constraint

Ct + (θPt + 1− θ) θ−1

N∑
j=1

qj,t +Bt = f(Kt−1) +RBt−1,
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with multiplier R−tλt, the investment Euler equation

Pt = R−1
(
θ−1fk(Kt) + (1− δ)Pt+1

)
− κ,

with multiplier R−tΓt, and the capital accumulation equation

Kt = (1− δ)Kt−1 + θ−1

N∑
j=1

qjt,

with multiplier R−tνt.

The planner’s first-order optimality conditions are

λt = uc(Ct)

λt = λt+1

νt = ηjθ (Pt − cq(qj,t))− λt (θPt + 1− θ)
N∑
j=1

qj,t (ηj − λt) = Γt − (1− δ)Γt−1

νt = R−1
(
(1− δ)νt+1 − λt+1fk(Kt)− θ−1Γtfkk(Kt)

)
Using the first two optimality conditions in the other three equations, we obtain equa-

tions (24), (25), and (26).

Furthermore, we note that the planning problem with a participation constraint is

equivalent to an alternative planning problem with objective:

ω
∞∑
t=0

R−tu(Ct) +
(1− ω)

N

∞∑
t=0

R−t

(
Pt

N∑
j=1

qjt −
N∑
j=1

c(qjt)

)
,

and without participation constraint. To see the equivalence between the two problems,

we can normalize the weight on the consumer to 1 dividing the objective function by ω and

let the multiplier ηj = η play the role of the effective planner weight on profits to achieve

a given present discounted value of π.

This equivalent formulation highlights that the problem also nests two other impor-

tant settings. First, the collusion case, where the planner maximizes the joint profits of

investment-good producers disregarding consumer welfare (ω = 0). We analyze collusion in

Section B.3. Second, the full-commitment problem of a single investment-goods producer,

if positive weight is attributed on one firm only.
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B.3 Commitment with Collusion

In this subsection we analyze the equilibrium under both commitment and collusion. A

planner chooses sequences of prices and quantities for all N producers, {Pt, qjt}, for t =

0, ..,∞ and j = 1, .., N to maximize

∞∑
t=0

R−t

(
Pt

N∑
j=1

qjt −
N∑
j=1

c(qjt)

)
,

subject to

Pt = R−1
(
θ−1fk(Kt) + (1− δ)Pt+1

)
− κ,

for t = 0, 1, .., with multiplier R−tΓt, and

Kt = (1− δ)Kt−1 + θ−1

N∑
j=1

qjt,

with multiplier R−tνt.

The first-order conditions with respect to Pt, qjt, and Kt are:

N∑
j=1

qjt − Γt + (1− δ)Γt−1 = 0

Pt − cq(qjt)− θ−1νt = 0

ΓtR
−1θ−1fkk(Kt) + νt −R−1(1− δ)νt+1 = 0,

which imply qjt = qt for all j (as long as cqq > 0) and

θPt − θcq

(
θIt
N

)
= −ΓtR

−1θ−1fkk(Kt) +R−1θ(1− δ)

(
Pt+1 − cq

(
θIt+1

N

))
. (B2)

We underscore the similarity between equation (B2) and equation (20). The key difference

between these two optimality conditions is given by the multiplier on the investment Euler

equation, which under collusion accounts for the aggregate capital accumulation path.

B.4 Stochastic Model

In this subsection, we present the stochastic version of the model that we analyze in Section

6.3. We define st to be the vector of shocks. Given s0, we define the history of shocks as

st = {st−1, st}.
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B.4.1 Investment Demand

A stochastic open economy is populated by a representative household with utility function

∞∑
t=0

∑
st

βtu(C(st))Pr(st), (B3)

where β ∈ (0, 1) denotes the discount factor and Ct = C(st) is aggregate consumption.

Further, we assume that uc > 0 and ucc ≤ 0, where subscripts denote first and second

derivatives, respectively.

We assume the household has access to state-contingent bonds. Given st, the budget

constraint of the household at time t reads

C(st)+P I(st)I(st)+
∑
st+1

B(st+1|st) = W (st)L+RK(st)K(st−1)+Rb(st|st−1)B(st|st−1)+D(st),

(B4)

where P I(st) = P I
t is the price of investment goods I(st) = It, Bt = B(st+1|st) are state-

contingent bonds that pay the gross interest rate Rb(st|st−1), Wt = W (st) is the wage,

L is a constant endowment of labor, RK
t = RK(st) denotes the rental rate of capital

Kt−1 = K(st−1), and Dt = D(st) are profits obtained from ownership of domestic firms.

For ease of notation, we will occasionally summarize the dependency of variables from the

history of shocks st with the corresponding time subscript.

Furthermore, we assume that the household is only subject to the natural debt limit.

Investment adds to the capital stock, which depreciates at rate δ. Therefore, capital

continues to evolve according to equation (1). As in the deterministic model, we assume

that investment has to be non-negative and restrict attention to a region of the parameter

space where this constraint is not binding.

The first-order conditions of the utility maximization problem with respect to bonds

and investment are

∀st+1 : 1 = β
uc(C(st+1))

uc(C(st))
Rb(st+1|st)Pr(st+1) (B5)

P I
t = Et

[
β
uc(Ct+1)

uc(Ct)

(
RK

t+1 + (1− δ)P I
t+1

)]
. (B6)

A representative firm rents capital and hires labor from the household to produce output

with a constant-returns to scale production function:

Yt = F (At, Kt−1, L). (B7)
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The first-order conditions of the profit maximization problem are

FK(At, Kt−1, L) = RK
t (B8)

FL(At, Kt−1, L) = Wt.

For notational convenience, we define f(At, Kt−1) ≡ F (At, Kt−1, L). Because of constant-

returns to scale, the representative firm makes zero profits in equilibrium—i.e., Dt = 0.

We assume that the risk-free interest rate satisfiesR = β−1 and thatRb(st+1|st)Pr(st+1) =

R. Given our choice of R, equation (B5) implies that ∀st+1 : uc(C(st+1))
uc(C(st))

= 1. Hence, by

combining the household and firm optimality conditions (B5), (B6), and (B8), we obtain

the following investment Euler equation that describes optimal capital accumulation in the

stochastic version of the economy:

P I
t = R−1Et

[
fk(At+1, Kt) + (1− δ)P I

t+1

]
. (B9)

Equation (B9) implicitly expresses the demand for investment goods as a function of capital

stock Kt−1, current and future investment prices P I
t and P I

t+1), and future shocks.

As in the deterministic case, as long as markets are complete, our assumptions on

ownership of the capital stock are immaterial and we can equivalently derive this condition

assuming that firms accumulate capital instead of households.

B.4.2 Investment-Goods Producers

We now describe the supply side of the market for investment goods. We assume that

there is an integer number N ≥ 1 of identical investment-goods producers owned by for-

eign investors. The objective of investment-goods producers is to maximize the present

discounted value of profits:
∞∑
t=0

∑
st

R−tπt(s
t)Pr(st). (B10)

Similarly to the deterministic case, we assume that a perfectly competitive representa-

tive firm combines an amount Qt and an amount Xt of output good to assemble domestic

investment with a Leontief production function. Hence, P I
t = θPt + 1 − θ, as in equation

(7), and the stochastic investment Euler equation (B9) becomes:

Pt = R−1Et

[
θ−1fk(At+1, Kt) + (1− δ)Pt+1

]
− θ−1(1− θ)(1−R−1(1− δ))︸ ︷︷ ︸

≡κ

. (B11)
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B.4.3 First Best

Before analyzing the effects of market power, we briefly introduce the competitive bench-

mark. This coincides with the solution to the problem of a planner who maximizes welfare

in the open economy taking as given the cost function to produce investment goods.

In a competitive equilibrium without market power, investment-goods producers choose

a plan of production levels {q(st)}∞t=0 to maximize (B10) taking as given the sequence of

prices schedules {P (st)}∞t=0. Thus, the equilibrium price satisfies Pt = cq
(
It
N

)
and optimal

capital accumulation satisfies

θcq

(
θIt
N

)
+ 1− θ = R−1Et

[
fk(At+1, Kt) + (1− δ)θcq

(
θIt+1

N

)
+ 1− θ

]
. (B12)

B.4.4 Markov Perfect Equilibrium and Generalized Euler Equation

We now proceed to derive the Markov Perfect Equilibrium. We denote by s and s′ current-

and next-period stochastic states. A generic investment-goods producer solves the following

recursive problem:

max
P,K′,q

Pq − c (q) +R−1E[V (K ′, s′)|s], (B13)

subject to the demand schedule

P = R−1E
[
θ−1fk(A

′, K ′) + (1− δ)P (K ′, s′)|s
]
− κ,

to the market-clearing condition

(N − 1)q−(K) + q = Q = θI,

and to the law of motion for capital

K ′ = (1− δ)K + I.

To obtain the stochastic Generalized Euler Equation (GEE) (B14), we first substitute

investment I from the market-clearing condition in the law of motion for capital. Second,

we use the derived equation to substitute q in the objective function. Third, we substitute

P in the objective function using the demand schedule. Finally, we take the first-order

condition with respect to K ′.

θP −θcq(q)+qR−1E
[
θ−1fkk(A

′, K ′) + (1− δ)Pk(K
′, s′)|s

]
+R−1E[Vk(K

′, s′)|s] = 0 (B14)

XI



The GEE includes the derivative of the future price with respect to capital in every possible

future realization of shocks.

B.4.5 Commitment to Future Production

We now examine the problem of investment-good producers under commitment. Given

initial capital K−1, oligopolists problem involves finding sequences {P (st), K(st)}∞t=0 such

that

∞∑
t=0

∑
st

R−t (Pt (θ(Kt − (1− δ)Kt−1)− (N − 1)q−,t)− c (θ(Kt − (1− δ)Kt−1)− (N − 1)q−,t))Pr(st)

(B15)

is maximized subject to the demand schedule (or, using the language of Ramsey-optimal

policy, “implementability constraint”)

Pt = R−1Et

[
θ−1fk(At+1, Kt) + (1− δ)Pt+1

]
− κ

for t = 0, 1, .., with multiplier R−tγt. The first-order conditions with respect to price

Pt = P (st) and capital level Kt = K(st) are:

qt − γt + γt−1(1− δ) = 0

θPt − θcq(qt) + γtR
−1Et

[
θ−1fkk(At+1, Kt)

]
−R−1θ(1− δ)Et [(Pt+1 − cq(qt+1))] = 0,

with initial condition on the multiplier γ−1 = 0.

C Additional Quantitative Analyses

C.1 Additional Details on the Solution Method

In this subsection, we provide additional details on our global solution method.

Markov Perfect Equilibrium. We approximate the Markov Perfect Equilibrium (Defi-

nition 1) using a version of the time-iteration algorithm to approximate the policy functions

I(K) and P (K). Specifically, we implement the following steps: (1) We guess a second-

order polynomial approximation for I(K) on a 50-point grid forK. (2) Given this candidate

policy function, we obtain an associated guess for P (K) by doing time iteration on equation

(6), recursively solving for the left-hand side on the same grid for K and then plugging

the obtained price function in the right-hand side. (3) Once we obtain a converged price

function, we use it to numerically approximate the derivative Pk(K). (4) Then, to update
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I(K), we apply time iteration to the GEE (12) substituting in it the envelope condition

(13) with a numerical approximation of the derivative Ik(K). (5) We repeat these steps

until all policy functions converge.

Commitment. To approximate the equilibrium with commitment (Definition 2), we solve

the model recursively by adding the multiplier on the past investment Euler equation as

a state variable. Specifically, we implement the following steps: (1) We guess third-order

polynomial approximations for the policy functions I(K, γ) and γ′(K, γ) on a 15-point grid

for K and a 10-point grid for γ. The polynomials include a constant, all individual terms

(K,K2, K3, γ, γ2, γ3) and cross-products (γK, γ2K, γK2). (2) We then use a time-iteration

algorithm on equations (19) and (20) to update the policy functions I(K, γ) and γ′(K, γ) on

the (K, γ) grid. (3) Given the new policy functions, we update the guess for the third-order

polynomial coefficients. (4) We repeat these steps until all policy functions converge.

C.2 Markup Decomposition under Commitment

In this subsection, we analyze the role of demand elasticity and quantities produced for

the dynamics of the static markup rate in the full commitment equilibrium. As in Section

5.6 we consider the transitional dynamics of the economy to the steady-state equilibrium

starting from initial conditions K−1 = 0.5 and γ−1 = 0.

We can reformulate the commitment first-order condition (20) as follows:

Pt − cq(qt)

cq,t
= −

∞∑
s=0

R−s(1− δ)s
γt+s

cq,t

(
dPt+s

dQt+s

)
(C1)

with dPt

dQt
= R−1θ−2fkk(Kt) and decompose the roles of quantities and slopes of the demand

curve along the equilibrium path.

Figure C1 illustrates that quantities are the most important driver of the dynamics of

the static markup rate.

C.3 Alternative Calibration to Aggregate Capital Stock

In this subsection, we revisit our main results with an alternative model calibration where

we interpret K as aggregate capital, i.e., as the sum of equipment and structures.

Calibration. Column “Aggr. K” of Table C1 reports the new parameter values. We

follow the same calibration strategy of Section 5. We set the capital share of income and

the rate of physical depreciation to standard values in the real-business-cycles literature
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Figure C1: Markup Decomposition under Commitment
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Notes: The figure displays a decomposition of the evolution of the static markup rate µS
t = (Pt − cq,t)/cq,t

over the transition of the economy to steady state in the Full Commitment Equilibrium. The figure

disentangles variation in the static markup rate (solid line) driven by: (i) quantities qt+s/cq,t produced by

each oligopolist (dashed line); (ii) the derivative of inverse demand with respect to quantities dPt+s/dQt+s

(dash-dotted line); and (iii) implicit discounting Bt,t+s (dotted line).

consistent with the new interpretation of K as aggregate capital. We calibrate the produc-

tivity level such that the capital stock is equal to one in the first-best steady state. We

adjust the steepness of the marginal cost function to match a ratio of operating income over

sales of around 30% and the marginal cost intercept so that capital price equals one in the

first-best steady state. Finally, we divide the baseline weight of the imported oligopolistic

input in total investment by three because equipment represents approximately one third

of the aggregate capital stock in US data.

Investment Demand Shock. Figure C2 illustrates the response of prices and marginal

cost (panel a) and markups (panel b) to a positive investment demand shock. We consider a

10.7% TFP increase in the domestic economy, which we calibrate to match an approximate

20% increase in the real price of semiconductors in the US over 2019-2023.

As in the main calibration, price and marginal cost overshoot their new steady-state

levels. Moreover, the marginal cost increases by 17.7% and thus determines most of the

observed price dynamics following the investment demand shock. Accordingly, static and

dynamic markup only increase by 2.4 and 1 percentage points on impact, respectively.

C.4 Alternative Calibration to Oligopolistic Wafer Production

In this subsection, we re-examine our main results with an alternative model calibration

where we interpret the imported oligopolistic input as wafers, i.e., the physical support of

chips, a key component in semiconductors manufacturing. We relate our findings to the
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Table C1: Parameters Values for Alternative Calibrations

Parameter Symbol Aggr. K Wafer Capacity

Demand Discount Factor β 0.96 0.96 0.96

Depreciation δ 0.08 0.1354 0.1354

Capital Share α 0.333 0.0645 0.0645

Oligopolistic Capital Share θ 0.122 0.1206 0.1206

Total Factor Productivity A 0.365 2.743 2.743

Supply Number of Producers N 3 3 3

Marginal Cost (Intercept) c1 0.6747 0.7073 0.6864

Marginal Cost (Slope) c2 100 55 19

Capacity Constr. Penalty c3 100

Capacity Constr. Param. κ 1.05

Notes: The table reports the parameter values of alternative calibrations of the model. The “Aggr.K”
column refers to the calibration where K represents aggregate capital, i.e., the sum of equipment and
structures. The “Wafer” column refers to the calibration where we interpret the oligopolistic input as
wafers. The “Capacity” column refers to the calibration where we explicitly model capacity constraints in
the form of a large change in the slope of the marginal cost function when the quantity produced exceeds
a threshold.

Figure C2: Investment-Demand Shock with Calibration to Aggregate Capital Stock
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

10.7% increase in TFP in the Markov Perfect Equilibrium under the alternative calibration summarized

by Table C1, column “Aggr. K”. Panel (a) plots the transition of the price Pt (solid line) and producers’

marginal cost cq,t (dashed line) to the new steady state. Panel (b) plots the transition of the static markup

rate µS
t (solid line) and of the dynamic markup rate µD

t (dashed line) to the new steady-state. We assume

that the shock occurs at t = 0, that the economy is in the initial steady state at t = −1, and that agents

have perfect foresight of the evolution of all variables after the unexpected shock occurs.

empirical evidence of Appendix A.2.
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Calibration. The “Wafer” column of Table C1 reports the new parameter values. We

calibrate the parameters of investment demand consistent with Table 1. We change the

parameter governing the share of oligopolistic input on total investment so that the observed

cumulative increase in the real price of wafers over 2019-2023 (62%) induces an approximate

7% increase in the real price of equipment. Appendix A.2 describes how we compute real

unit prices using Taiwan Ministry of Economic Affairs’ data on wafer production values

and volumes.

Moreover, we adjust the slope of the marginal cost function to match a ratio of Operating

Profits over sales of around 33%, which we observe in Orbis data for the main Taiwanese

chips manufacturers (TSMC and Mediatek). We focus on Taiwanese manufacturers for

consistency with administrative price and quantity data used in the calibration of the

oligopolistic investment share. Finally, we set the marginal cost intercept so that the price

of investment equals one in the first-best steady state.

Investment Demand Shock. Figure C3 illustrates the response of price and marginal

cost (panel a) and markups (panel b) to a positive investment demand shock. We calibrate

an increase in TFP to match an approximate 60% increase in the real price of wafers over

2019-2023.

As in the main calibration, prices and marginal costs overshoot their new, higher steady-

state levels. As in our baseline, the marginal cost determines most of the observed price

dynamics increasing by 48.7 percent on impact. However, in this alternative calibration

endogenous markups also rise significantly by 9.9 percentage points on impact.

The dynamics implied by the model with this alternative calibration are broadly con-

sistent with the empirical patterns of Appendix A.2. Indeed, because the price increase

applies to all infra-marginal units, the model predicts an increase in average unit margins

approximately twice as large as the increase in unit prices, consistent with Figure A3b.

C.5 Alternative Calibration with Capacity Constraints

In this subsection, we examine an alternative calibration of the model where we explicitly

consider capacity constraints in the form of a large change in the slope of the marginal cost

function.

To this end, we generalize the cost function used in the baseline model as c(q) =

c1q+
c2
2
q2 + I[q ≥ q̄] · c3

2
(q− q̄)2, where I[·] is an indicator function that takes value of one

when quantity q exceeds a threshold q̄ and zero otherwise. We specify q̄ as a multiple κ of

the quantity produced by each supplier in the first-best steady state. For large values of c3,

the new functional form is a reasonable proxy of hard capacity constraints—i.e., q ≤ q̄—but
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Figure C3: Investment-Demand Shock with Calibration to Oligopolistic Wafer Production
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

50% increase in TFP in the Markov Perfect Equilibrium under the alternative calibration summarized

by Table C1, column “Wafer”. Panel (a) plots the transition of the price Pt (solid line) and producers’

marginal cost cq,t (dashed line) to the new steady state. Panel (b) plots the transition of the static markup

rate µS
t (solid line) and of the dynamic markup rate µD

t (dashed line) to the new steady-state. We assume

that the shock occurs at t = 0, that the economy is in the initial steady state at t = −1, and that agents

have perfect foresight of the evolution of all variables after the unexpected shock occurs.

has the important advantage of preserving differentiability. This allows us to extend the

Generalized Euler Equation (12) to the new setting without changing our solution method.

Calibration. Column “Capacity” of Table C1 reports the parameter values for this ver-

sion of the model. We calibrate the parameters of investment demand consistent with Table

1. For the calibration of the cost function parameters, we first set c3 to a large number to

proxy a hard capacity constraint above the threshold q̄. Second, we set κ, which governs

the size of the threshold q̄ relative to the first-best steady state quantity, so that both the

first-best and the Markov Perfect Equilibrium steady states feature non-binding capacity

constraints. Third, we adjust the slope c2 of the marginal cost function to match a ratio of

operating income over sales of around 30%, consistent with the main calibration. Finally,

we set the marginal cost intercept c1 so that the price of investment equals one in the

first-best steady-state equilibrium.

Investment Demand Shock. Figure C4 illustrates the response of price and marginal

cost (panel a) and markups (panel b) to a positive investment demand shock, which we

proxy with an increase in TFP in the domestic economy. For consistency, we calibrate

the size of shock (+15.5%) to induce an increase of investment-goods price equal to 20

percent, as in Section 5. The shock is large enough to activate capacity constraints in our
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model extension. Moreover, it is smaller than the size of the shock required in our baseline

calibration exactly because binding capacity constraints drive a larger increase in marginal

cost and price.

As in the main calibration, prices and marginal costs overshoot their new, higher steady-

state levels. As in our baseline, the increase in the marginal cost (+14.5%) determines most

of the observed price dynamics. However, with hard capacity constraints the response of

markup is larger and equivalent to 5.6 percentage points on impact, which drives more than

one quarter of the price increase. These dynamics provide further support to our analysis

of Section 5.5 on the role of technology for market power.

Figure C4: Investment-Demand Shock with Calibration with Capacity Constraint
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

15.5% increase in TFP in the Markov Perfect Equilibrium under the alternative calibration with capacity

constraints summarized by Table C1, column “Capacity”. Panel (a) plots the transition of the price Pt

(solid line) and producers’ marginal cost cq,t (dashed line) to the new steady state. Panel (b) plots the

transition of the static markup rate µS
t (solid line) and of the dynamic markup rate µD

t (dashed line) to

the new steady-state. We assume that the shock occurs at t = 0, that the economy is in the initial steady

state at t = −1, and that agents have perfect foresight of the evolution of all variables after the unexpected

shock occurs.

C.6 Aggregate Shocks with Full Commitment

In this subsection, we analyze the response of the economy to aggregate shocks when

investment-goods producers can commit to future production. We first focus on an aggre-

gate demand shock and compare its effects to the Markov Perfect Equilibrium dynamics

presented in Section 6. Then we replicate the change in market structure of Section 7.1.

Figure C5 displays the evolution of aggregate variables in response to a positive TFP

shock of the same size as in Figure 6a. As in the Markov Perfect Equilibrium, the rise in
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capital demand induces an increase in quantities produced and, thus, in the static marginal

cost. However, under commitment the price increases by less than the marginal cost, which

determines a significant compression (-14 percentage points) in the static markup. More-

over, the dynamic markup is barely affected by the investment demand shock. Therefore,

increasing marginal costs are the main driver of higher equilibrium prices also under alter-

native assumptions about commitment by investment-goods producers.

Figure C5: Investment-Demand Shock with Full Commitment
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

increase in TFP in the full commitment equilibrium. Panel (a) plots the transition of the price Pt (solid

line) and producers’ marginal cost cq,t (dashed line) to the new steady state. Panel (b) plots the transition

of the static markup rate µS
t (solid line) and of the dynamic markup rate µD

t (dashed line) to the new

steady-state. We assume that the shock occurs at t = 0, that the economy is in the initial steady state at

t = −1, and that agents have perfect foresight of the evolution of all variables after the unexpected shock

occurs.

Next, we analyze a shock to market structure, namely an increase in the number of

investment-goods producers from 3 to 4, in the full commitment setting. Figure C6 dis-

plays the response of capital, price, and marginal cost to the shock. Although the expansion

in production capacity induces a smaller decline in the static marginal cost with full com-

mitment (+4%) compared to the Markov Perfect Equilibrium (around 7%), the decline in

price is significantly larger in the presence of commitment (-20% vs. -12%). This finding

suggests that the competition channel is even stronger under full commitment, and that the

effects of changes in market structure presented in Subsection 7.1 represent a lower bound.

Accordingly, we find that the larger compression in markups generates an increase in the

level of capital that is more than twice as large under commitment than in the Markov

Perfect Equilibrium.
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Figure C6: Increase in the Number of Investment-Goods Producers with Commitment
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Notes: The figure illustrates the response of the economy in the full commitment equilibrium to an unantic-

ipated and permanent increase in the number of investment-goods producers from N = 3 to N = 4. Panel

(a) plots the transition of domestic economy’s aggregate capital stock Kt−1 to the new steady state. Panel

(b) plots the transition of the investment price Pt (solid line) and producers’ marginal cost cq,t (dashed

line) to the new steady state. We assume that the shock occurs at t = 0, that the economy is in the initial

steady state at t = −1, and that agents have perfect foresight of the evolution of all variables after the

unexpected shock occurs.

C.7 Business Cycles with TFP and Cost Shocks

In this subsection, we analyze an extension of the stochastic model of Section 6.3 that

includes stochastic shocks to both productivity of the domestic economy and cost function

of investment-goods producers.

Calibration. As in Section 6.3, we assume that productivity follows an AR(1) process in

logs: log(At) = (1− ρ)µA + ρA log(At−1) + εAt and we consider the same stochastic process

for the cost-function shock: log(Zt) = (1− ρ)µZ + ρZ log(Zt−1) + εZt .

Table C2 reports the stochastic-processes parameter values used in the simulations,

which we calibrate to match five data moments summarized in Table C3. For calibration,

we first estimate a VAR(1) model using (i) the natural logarithm of US real GDP and

(ii) Machinery and Equipment real US Producers Price Index. We HP-filter both series at

yearly frequency. We restrict the lagged effects of each series on the other to be zero but

allow for a non-zero covariance among residuals. The second column of Table C3 reports

the empirical estimates. We then find through indirect inference the vector of parameters of

log(At) and log(Zt) stochastic processes that minimize the distance between the empirical

moments and those implied by a long simulation of the model. The third column of Table

C3 compares model performance to the data.
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Table C2: Parameter Values for the Stochastic Processes

Parameter Symbol Value

TFP Stochastic Process Autocorrelation ρA 0.850

Standard Deviation σA 0.018

Cost Level Stochastic Process Autocorrelation ρZ 0.575

Standard Deviation σZ 0.085

Correlation Correlation
σA,Z

σAσZ
-0.290

Notes: The table reports the parameter values for the stochastic processes of TFP At and cost-level Zt

used in simulations.

Table C3: Stochastic Processes Calibration: Data and Model Moments

Parameter Model Data

log(GDP) Autocorrelation 0.09 0.136

log(GDP) Standard Deviation 0.010 0.014

Equipment Price Autocorrelation 0.028 0.024

Equipment Price Standard Deviation 0.015 0.022

log(GDP)-Equipment Price Correlation 0.008 0.002

Notes: The table illustrates the performance of the calibrated stochastic model against the targeted empir-
ical moments. The Data column reports empirical estimates of a yearly VAR(1) model with two variables:
(i) HP-filtered natural logarithm of real US GDP and (ii) HP-filtered Machinery and Equipment US Pro-
ducers Price Index deflated by the US GDP deflator. We restrict the lagged effects of each series on the
other to be zero. The Model column reports the model counterparts of the empirical moments, obtained
by estimating the same VAR(1) model on the HP-filtered natural log of GDP (Yt) and the HP-filtered
investment price P I

t obtained from a long simulation of the stochastic model given parameters of Tables 1
and C2.

The parameters of the TFP stochastic process are similar to the calibration of Section

6.3. Moreover, we find a small negative correlation of TFP shocks with cost-function shocks,

which are less persistent but significantly more volatile than TFP shocks.

Business Cycle Moments. Table C4 reports several business-cycle moments from a long

simulation of the richer stochastic model. Consistent with Section 6.3, prices and markups

are higher on average in the presence of commitment. The model predicts a moderate

business-cycle volatility of prices and markups in response to productivity shocks, consis-

tent with our findings on the effect of a permanent investment-demand shock. Moreover,

cost shocks dampen the comovement between prices, investment, and output generated by

TFP shocks. At the same time, in this richer stochastic environment the model generates

significantly higher volatility of investment relative to GDP.
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Table C4: Stochastic Productivity and Cost: Business Cycle Moments

FB MPE FC

Mean I 0.134 0.128 0.098

Mean P 0.990 1.136 1.702

Mean Markup 0 0.160 0.908

St. Dev. I/St. Dev. Y 18.306 6.694 21.484

St. Dev. P 0.025 0.037 0.025

St. Dev. Markup 0 0.008 0.074

Corr. Y and I 0.135 0.482 0.184

Corr. Y and P -0.150 0.007 0.383

Corr. Y and Markup 0 0.275 0.272

Notes: The table reports several moments related to investment, the price of the oligopolistic investment
good, and the static markup rate, from a long a simulation of the model with both stochastic domestic
economy productivity and stochastic cost-level. The first column refers to the first-best allocation, the
second column to the Markov Perfect Equilibrium, and the third column to the case of full commitment.
Standard deviations and correlations are computed for the logarithm of the variables, except for the markup
rate, and the simulated data are HP-filtered with a smoothing coefficient equal to 6.25 for annual frequency.

C.8 Implicit Capacity-Subsidy Rates

In this subsection we connect the experiment of Section 7.2—in which we simulate a reduc-

tion in the slope c2 of investment-goods producers marginal cost function—to an explicit

subsidy scheme. We first derive the subsidy τ(qt, τ̃) such that

c(qt)(1− τ(qt, τ̃)) = c1qt + (1− τ̃)c2q
2
t

as a function of the quantity qt and of the desired reduction τ̃ of the marginal cost slope.

Then, we analyze its properties around the steady state of the Markov Perfect Equi-

librium for an approximate τ̃=0.24 reduction in c2—i.e., the percent change implied by a

reduction of c2 from 22 to 16.8. We verify that the function is approximately linear and

that the implied subsidy rate is almost 8.5% at the MPE steady-state value of q (0.0157).

C.9 Constrained-Efficient Equilibrium

In this subsection, we analyze the constrained-efficient optimal allocation. Figure C7 illus-

trates the transition of the economy to constrained-efficient equilibrium steady-state (solid

lines). We assume that the initial level of capital equals the Markov Perfect Equilibrium

steady-state value, that the initial value of the multiplier Γt equals zero, and that the lower

bound on profits π in the participation constraint equals the value of profits in the Markov

Perfect Equilibrium steady state.
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In the absence of previous commitment (Γ0 = 0) the planner finds it optimal to expand

production and lower both price and markup relative to the Markov Perfect Equilibrium

steady state, represented by the dashed lines. The increase in the quantity of capital and

the reduction in its price initially benefit consumers in the domestic economy, but depress

profits below π. Therefore, profits must subsequently increase along the transition to satisfy

firms participation constraint. The planner achieves this by raising price and markup and

reducing quantities.

Figure C7: Transitional Dynamics to the Constrained-Efficient Equilibrium
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(b) Multiplier Γt
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Notes: The figure illustrates the transition of the economy to the constrained-efficient steady-state equi-

librium. We assume that the initial level of capital equals the Markov Perfect Equilibrium steady-state

value, that the initial value of the multiplier Γt equals 0, and that the lower bound on profits π in the

participation constraint equals the value of profits in the Markov Perfect Equilibrium steady state. The

solid lines in panels (a), (b), (c), and (d) plot the transitions of aggregate capital Kt−1, multiplier Γt,

price Pt, and static markup rate µS
t respectively. The dashed lines in panels (a), (c), and (d) represent the

Markov Perfect Equilibrium steady-state values of aggregate capital, price, and static markup, respectively.
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Figure C8: Investment-Demand Shock with Learning by Doing
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

increase in TFP in the Markov Perfect Equilibrium of the model with learning by doing (Section 8). Panel

(a) plots the transition of the price Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new

steady state. Panel (b) plots the transition of the static markup rate µS
t (solid line) and of the dynamic

markup rate µD
t (dashed line) to the new steady-state. We assume that the shock occurs at t = 0, that

the economy is in the initial steady state at t = −1, and that agents have perfect foresight of the evolution

of all variables after the unexpected shock occurs.

C.10 Aggregate Shocks with Learning by Doing

In this subsection, we analyze the effect of aggregate shocks in the Markov Perfect Equi-

librium of the model with learning by doing. For the simulations, we assume that firms

internalize learning by doing effects on marginal cost.

Figure C8 displays the dynamics of key aggregates in response to a positive TFP shock

in the domestic economy. For the sake of comparability, the size of the shock is the same

as in Figure 6. Most of the price increase is driven by changes in the marginal cost (panel

a). However, the size of the response is smaller for two reasons. First, capital accumulation

dampens the response of the marginal cost through learning by doing. Second, the increase

in markups is smaller as oligopolistic producers partly internalize the benefit of larger

production in terms of lower future marginal cost.

Figure C9 illustrates the effect of increasing the number of investment-goods producers

from N = 3 to N = 4 on aggregate capital (left panel) and on the price and marginal cost

(right panel). Total capacity expands and competition rises. Therefore, the marginal cost

declines—more than in the baseline economy due to learning by doing—and contributes to

a larger decline in the price, together with a larger compression of markups.
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Figure C9: Increase in the Number of Investment-Goods Producers with Learning by Doing
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Notes: The figure illustrates the response of the economy in the Markov Perfect Equilibrium of the model

with learning by doing (Section 8) to an unanticipated and permanent increase in the number of investment-

goods producers from N = 3 to N = 4. Panel (a) plots the transition of domestic economy’s aggregate

capital stock Kt−1 to the new steady state. Panel (b) plots the transition of the investment price Pt (solid

line) and producers’ marginal cost cq,t (dashed line) to the new steady state. We assume that the shock

occurs at t = 0, that the economy is in the initial steady state at t = −1, and that agents have perfect

foresight of the evolution of all variables after the unexpected shock occurs.
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