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1 Introduction

In this paper we study the optimal dynamic policy of a firm subject to moral hazard problems. Our

goal is to characterize theoretically the links between the size and age of the firm and variables such as

the probability of survival, the rate of growth and its variability. The empirical literature has uncovered

many regularities. Cooley and Quadrini [8] summarize early empirical results stating: “Conditional on

age, the dynamics of firms (growth, volatility of growth, job creation, job destruction, and exit) are

negatively related to the size of the firm.” Similar conclusions are in Sutton [30], who cites studies by

Evans [16], [17] and Dunne, Roberts and Samuelson [13], [14]. Sutton [30] observes: “For any given

size of firm (or plant), the proportional rate of growth is smaller for older firms (or plants), but the

probability of survival is greater.”

More recent work has emphasized the role of age. Haltiwanger, Jarmin and Miranda [20] have shown1

that “without age controls [there is] a strong inverse relationship between firm size and net employment

growth”. However “once we control for firm age, there is no systematic relationship between firm size and

growth”. They add that “young firms are more volatile and exhibit a higher rate of gross job creation

and destruction that their older counterpart”. Similarly, Decker et al. [9] observe that ‘conditional on

survival, younger firms have much higher rates of job growth’.

The theoretical literature has lagged behind, despite the recent rapid development of the dynamic

contracting literature. Analyzing the impact of size requires introducing frictions which make the current

level of capital relevant for the choice of optimal policies. We do this in a simple way, assuming partial

irreversibility of investment: A firm can sell existing (used) capital only at a price lower than the price

of new capital. The solution to the dynamic contracting problem yields policy functions that depend on

the existing capital stock and on the value promised to the firm’s owner (which, following the literature,

we call equity).

In models in which equity is the only state variable and capital is chosen as a function of equity, as it

is the case in Quadrini [25] and Clementi and Hopenhayn [6] (on which we build), there cannot possibly

be a different behavior by age once we condition on size. It is only the presence of two state variables

that allows firms with the same size to adopt different policies. As it will become clear, it is not age

1Haltiwanger, Jarmin and Miranda [20] use employment, rather than accumulated capital, as a measure of size. Their

results can be interpreted through our framework if we assume that there is a fixed ratio of capital and labor.
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per se which determines the different behavior of firms. Rather, firms of different ages have different

distributions of equity conditional on size. While the optimal policy of the firm is determined only by

the two state variables (value of equity and size), not by age, the probability distribution over the two

state variables changes with age. This implies that when only one state variable, e.g. size, is observed,

the conditional distribution will depend on age.

Our theoretical results can be summarized as follows. In general, optimal second-best policies pre-

scribe inefficient liquidation and underinvestment with positive probability. However, these effects are

smaller for larger firms. More precisely, other things equal, at higher levels of capital the optimal

probability of liquidation is smaller, and future levels of capital are higher.

We do not have explicit theoretical results on the effect of age on the rate of growth and the variability

of the rate of growth. To get some insights we have run simulations which show that, conditional on

size, both the rate of growth and the variability of the rate of growth are negatively related to age. To

see the intuition, consider firms with a low level of capital. Younger firms with low capital typically

have lower levels of equity because they started with low equity and, even if they have been successful,

they are still building up; such firms have more potential for growth. Old firms with a low level of

capital typically had unsuccessful stories (this is the reason why their capital is low) and this reflects in

a worsening distribution of equity. Thus, these firms tend to grow less.

The rest of the paper is structured as follows. In section 2 we discuss the literature. In section

3 we introduce the model and characterize the optimal policy absent agency problems. In section 4

we study the optimal contract with asymmetric information. Section 5 is dedicated to defining the

empirical counterparts of our theoretical model. We next focus in section 6 on the sensitivity to size

of the probability of survival, the investment policy and the rate of growth. Finally, section 7 explores

the implication of the model for the effect of age. Section 8 contains concluding remarks. Appendix I

collects the proofs and Appendix II describes the methodology used in the simulations.

2 Discussion of the Literature

The impact of financial constraints on firms’ investment policies has long been an important issue both in

financial economics and industrial organization. One line of research has taken the financial constraints

as given and analyzed implications for firms’ dynamics. Cooley and Quadrini [8], for instance, show
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that exogenous borrowing constraints and persistent shocks can generate relationships between age and

growth of the firm that are consistent with empirical evidence. Cao, Lorenzoni and Walentin [5] reach

similar conclusions in a model with limited enforcement in which a continuum of firms are subject

to aggregate economy-wide shocks and are exogenously restricted to issue state-dependent securities.

More recently, Bolton, Chen and Wang [4] have analyzed the optimal policies with exogenous financial

constraints in a continuous time model. In this line of research financial restrictions are exogenous,

so the next question is where financial constraints come from. The research has therefore focused on

the design of optimal dynamic financial contracts in the presence of asymmetric information or limited

ability to enforce contracts.

Optimal Dynamic Contracts. With agency problems the first-best is not attainable. The main

theme of this literature is that financing constraints are imposed to provide incentives for the borrower.

These incentives typically take the form of threats to either transfer control (including liquidation) or

to reduce future financing. In our model asymmetric information plays a central role.2 We build on

the work of Quadrini [25] and, more closely, Clementi and Hopenhayn [6]. In their models, the firm’s

revenue depends on capital investment and on random shocks3. They show that in an optimal contract

both the amount of investment and the value of equity increase with high revenue shocks and decrease

with low ones. The sensitivity of equity value to revenue shocks provides incentives to the entrepreneur

to reveal the true value of the shock. Financing constraints tend to disappear when the value of equity

becomes sufficiently large, which in turn happens as the firm approaches the optimal size. In Clementi

and Hopenhayn [6] the capital invested in each period depreciates completely at the end of the period.

Therefore size, defined as the amount of capital invested in the firm, has to be decided in every period

and it is not a state variable. Clementi and Hopenhayn [6] use the value of equity as a proxy for size.

2See Albuquerque and Hopenhayn [2] for a model of optimal financial contracts and firm dynamics with limited

enforcement. One important issue in these models is the punishment which can be inflicted on a defaulting entrepreneur.

Cooley, Marimon and Quadrini [7] consider a model with limited enforcement and optimal financial contracts, assuming

that a defaulting entrepreneur retains access to financial markets and can have a fresh start in the next period. Another

important issue is that with limited enforcement durable capital may become more valuable since it is more easily sized

in case of bankruptcy, see Rampini and Viswanathan [27].

3In Clementi and Hopenhayn [6] the sequence of productivity shocks is i.i.d.. Fu and Krishna [18] generalize the model

allowing for Markovian shocks. DeMarzo et al. [12] also consider the case of persistent shocks, although their model is

technically different.
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This can be justified by the fact that in the optimal contract higher equity values are on average (not

always) associated to higher investment. However, as previously pointed out, the model cannot make

predictions on the effects of size which are distinct from predictions related to the financial structure of

the firm.

Size as a State Variable. Size can have an impact on the optimal policy only with adjustment costs.

If capital can be bought and sold at the same price and there are no other adjustment costs, as in

Quadrini [25], then in each period the firm can choose the optimal amount of capital independently of

the current level of capital.

We enrich the Clementi–Hopenhayn model by introducing durable capital, so that size becomes a

relevant variable in the firm’s decision problem. In our model capital depreciates at rate d ∈ [0, 1] (the

Clementi–Hopenhayn model corresponds to the special case d = 1). In each period the existing capital

can be increased by new investment, or reduced by selling any part of it at a price that is lower than

the investment’s cost. Size is defined as the amount of capital existing at the beginning of the period,

determined by past investment decisions and depreciation. The fact that used capital can be sold only

at a discount is what makes size a state variable in our model, not just the fact that capital is durable.

It is worth emphasizing that in Clementi-Hopenhayn the optimal policy would still depend on equity

only if depreciation were partial but the price of used capital were the same as the price of new capital.

The assumption of decreasing returns to scale is also important in generating our main results. Recent

work in dynamic financial contracting (De Marzo and Fishman [10], DeMarzo and Fishman [11] and

DeMarzo et al. [12]) has analyzed the dynamic contracting problem under the assumption of constant

returns to scale and convex adjustment costs4. These models generate interesting and important pre-

dictions on the optimal investment policy but are ill-suited to evaluate the effect of size, as the optimal

policy depends on the ratio between firm’s value and size (i.e. the value per unit of capital) rather than

on the two variables separately. In the words of DeMarzo et al. [12]:

“Because our model is based on a constant returns to scale investment technology ... it is

not well suited to address questions relating firm size and growth. Indeed, if we control for

past performance or financial slack, size does not matter in our framework.”

4Ai, Kiku and Li [1] also have a constant returns model and durable capital but they assume limited liability for all

parties and look at general equilibrium effects.
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Our model has decreasing returns to scale and the optimal policy is based both on the value of the firm

and its size – not on their ratio or any other single-valued function of the two. This is the minimal

requisite for making predictions that identify the impact of size on a firm’s decisions.

Evidence on Used Capital Discount. The assumption that used capital goods sell at a discount

has ample empirical support. Ramey and Shapiro [26], in their study of the aerospace industry, state

that “even after age-related depreciation is taken into account, capital sells for a substantial discount

relative to replacement cost”. The relevance of the market for used capital has been analyzed in many

recent papers, see e.g. Eisfeldt and Rampini [15], Gavazza [19] and Lanteri [21]. One feature that is

absent in our model is the dependence of the used capital price on the state of the economy. Our model

could easily be generalized to make the price of used capital stochastic and dependent on the state of

the economy. We could also allow the state of the firm to be correlated with the state of the economy.

These complications however do not produce interesting insights about the optimal policy of the single

firm. They should be taken into account when looking at the aggregate consequences of investment and

divestment behavior, an issue we do not discuss.

3 The Model

Time is discrete and the horizon is infinite. At time 0 an entrepreneur has an idea for a project which

requires funding to acquire an enabling asset (e.g. a license or land) at cost A and then capital at

subsequent times. The entrepreneur has insufficient funds and thus needs financing from a lender. Both

the lender and the entrepreneur are risk neutral and have a common discount factor δ ∈ (0, 1). To

rule out trivial cases, A is lower than the value generated under the optimal financing contract that we

characterize in Section 4.

Once the enabling asset is acquired, the firm buys capital and uses it to generate cash flow at any

time t > 0. At the beginning of the period the project can be continued or liquidated. If liquidated,

the existing assets are sold at their ‘scrap’ value, to be specified shortly. If the project continues, the

firm makes a capital adjustment decision, i.e. either sells part of its existing capital or buys new capital.

The capital stock Kt then generates a cash flow of θt · R(Kt), where θt is the realization of a random

variable with support {0, 1} and R is a production function. We make the following assumptions about

the production process.
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Assumption 1 The random variables {θ̃t}+∞
t=1 are i.i.d., with p ≡ Pr(θ̃t = 1) ∈ (0, 1). The function

R(·) is defined on [0,+∞), bounded, continuously differentiable, strictly increasing, strictly concave and

such that R(0) = 0 and p ·R′(0) > 1.

Capital depreciates at rate d ∈ (0, 1). Denoting It the change in capital through investment or divestment

(sale), at time t, the law of motion is

K0 = 0 and Kt = (1− d)Kt−1 + It, t = 1, 2...

The unit price of new capital is 1, while the selling price of ‘used’ capital is q ∈ (0, 1). Thus the cost of

adjusting capital is given by the function

I(Kt, Kt−1) =


Kt − (1− d)Kt−1, if Kt ≥ (1− d)Kt−1

q(Kt − (1− d)Kt−1), if Kt < (1− d)Kt−1.

We make the following assumption on the liquidation (‘scrap’) value S(Kt−1).

Assumption 2 The liquidation value at time t is S(Kt−1) = S + q(1− d)Kt−1, with 0 < S < A.

The variable S denotes the liquidation value of the enabling asset. If Kt−1 is the amount of capital

available at the beginning of period t − 1, then the amount of capital left at the end of period t − 1

is (1 − d)Kt−1. Selling that amount of capital at the beginning of period t at a unit price q generates

revenue q(1− d)Kt−1. The inequality S < A implies that it cannot be optimal to buy the enabling asset

only to liquidate the firm.

As in Clementi and Hopenhayn [6], we assume that the entrepreneur is protected by limited liability,

which implies that the monetary transfer from the firm to the lender in period t cannot exceed the cash

flow θtR(Kt). The cash flow is privately observed by the entrepreneur and not verifiable, so the contract

has to provide incentives to report correctly the realization of θ̃t.

As a benchmark, consider the case of verifiable cash flow (no agency problem). Let W sym(K) denote

the present value of the project under symmetric information, when the capital stock at the beginning of

the previous period was K. Since we assume that A is lower than the value generated under the second

best policy, we have A < W sym(0). By Assumption 2 we have S < A, so S < W sym(0). The inequality

in turn implies
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S + q(1− d)K < W sym(0) + q(1− d)K. (1)

Since the firm can always sell all the existing capital (1−d)K at unit price q and then follow the optimal

investment policy starting at K = 0, we also have

W sym(0) + q(1− d)K ≤ W sym(K) (2)

Combining 1 and 2 yields

S + q(1− d)K < W sym(K) (3)

so continuation is always optimal. Therefore the first-best problem can be stated as

max
{Kt}∞t=1

E

[
∞∑
t=1

δt
(
θ̃tR(Kt)− I(Kt, Kt−1)

)]
(4)

with initial condition K0 = 0. Proposition 1 establishes that the optimal policy is characterized by the

amount of capital K∗ determined by the equation

pR′ (K∗) = 1− δ (1− d). (5)

Proposition 1 With no asymmetric information, it is optimal to buy K∗ in period 1 and dK∗ in every

subsequent period.

We omit the proof, which is standard. The left-hand side of equation (5) is the marginal benefit of

increasing capital, i.e. the expected marginal product of capital. The right-hand side is the net marginal

cost of new capital – any unit bought in period t costs one, but reduces by (1 − d) the amount of

capital that will be purchased in period t + 1. Along the optimal path, firm’s size remains constant

at K∗. Without asymmetric information higher current size does not imply higher future size. If the

firm reaches any level K̂ > K∗, something that can only happen when it deviates momentarily from the

optimal policy, capital will “revert to the mean” K∗, at a speed that depends on the resale price q.

4 Optimal Contracts under Asymmetric Information

In this section we study the optimal contract under asymmetric information. We first describe the set

of feasible contracts and then discuss optimality.
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4.1 Feasible Contracts

A financing contract specifies a monetary transfer from the lender to the borrower at t = 0 and, for

each subsequent period, a probability of liquidation, an investment level, and payments between the

two parties as functions of history. At t = 0 the only possible activity is the acquisition of the enabling

asset at price A. At t ≥ 1, if the firm is still active, the sequence of events is as follows. First, the

firm is liquidated with probability λt ∈ [0, 1]. If the firm is liquidated, the borrower is paid Qt, the

lender keeps the remaining part of the scrap value S(Kt−1)− Qt and the relationship ends. If the firm

remains active, an investment decision is made. Let Kt denote the amount of capital available at period

t. The borrower privately observes the outcome θtR(Kt), reports5 θ̂t ∈ {0, 1} to the lender and pays

an amount τt which may depend on the current message, the level of capital Kt chosen and the history.

At time t the outcome is at =
{
Kt, θ̂t

}
where θ̂t is the message issued by the borrower. A history

up to t is a collection ht = {as}ts=0 and Ht is the set of all possible ht. A financing scheme specifies

a vector (λt(ht−1), Qt(ht−1), κt(ht−1), τt(ht)) for each possible history, where κt denotes a probability

distribution6 over R+. The scheme is feasible if for each ht we have λt+1(ht) ∈ [0, 1], suppκt+1(ht) ⊂

[0,+∞), Qt+1 (ht) ≥ 0 and τt(ht) ≤ θ̂tR(Kt), the last two inequalities being the consequence of borrower’s

limited liability. The contract is individually rational if the present expected value of payments is larger

than the amount invested at time 0 by both parties, where the expected value is computed under the

assumption that the borrower reports the true value θt at each period. Let r̂t : Ht → Θ be a reporting

strategy at time t for the borrower and r̂ = {r̂t}+∞
t=0 be a reporting strategy for all periods. Denote

by r the truth-telling strategy, that is rt (ht−1, (Kt, θt)) = θt for each (ht−1, (Kt, θt)). Let V r̂
t (ht−1) be

the present value of the expected payment to the entrepreneur from time t on, given history ht and

reporting strategy r̂. A contract is incentive compatible if V r
t (ht) ≥ V r̂

t (ht) for each history ht and

reporting strategy r̂. Since we look at contracts inducing truth-telling, it will be convenient to simplify

notation by setting Vt(ht) ≡ V r
t (ht).

5By the revelation principle, allowing for other sets of feasible messages is inconsequential.

6Using a probability distribution over Kt is useful to establish some concavity properties of the value function. The

matter is discussed in the proof of Proposition 2.
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4.2 Efficient Contracts

To analyze the incentive–efficient contract, we adopt a recursive formulation7 similar to Clementi and

Hopenhayn [6]. In our model, besides the entrepreneur’s promised utility, the current level of capital

must also be treated as a state variable.

We introduce the following functions. At the beginning of period t, V (ht−1) denotes the expected

continuation payoff for the entrepreneur. If the firm is not liquidated, then a level of capital Kt is

decided as realization of the random variable κt(ht−1). Then the entrepreneur observes θtR(Kt) and

reports θ̂t. The expected continuation payoff for the entrepreneur after history ht−1, capital choice Kt,

shock realization θt and report θ̂t is given by

V̂ (θt, θ̂t, Kt, ht−1) = θtR(Kt)− τ(ĥt) + δ V (ĥt), (6)

where ĥt = (ht−1, (Kt, θ̂t)). The functions V and V̂ are linked by the ‘promise keeping’ constraints

V (ht−1) = λtQt + (1− λt)Eκt
[
p V̂ (1, 1, Kt, ht−1) + (1− p) V̂ (0, 0, Kt, ht−1)

]
∀ht−1 ∈ Ht−1 (7)

where λt, Qt and κt are functions of ht−1. Incentive compatibility requires

V̂ (θt, θt, Kt, ht−1) ≥ V̂ (θt, θ̂t, Kt, ht−1) ∀Kt ∈ suppκ, ∀θt, θ̂t (8)

and limited liability implies

τ(ht−1, (Kt, 0)) ≤ 0 (9)

To satisfy the participation constraint of the lender there must be histories such that the entrepreneur

pays a strictly positive amount when θt = 1. In order to convince the entrepreneur to truthfully report

θt = 1 the incentive compatibility constraint

V̂ (1, 1, Kt, ht−1) ≥ R(Kt) + δV (ht−1, (Kt, 0)) (10)

has to be satisfied8. Since V̂ (1, 1, Kt, ht−1) = R(Kt)−τ (ht−1, (Kt, 1))+δV (ht−1, (Kt, 1)), the inequality

in (10) is equivalent to

τ (ht−1, (Kt, 1)) ≤ δ [V (ht−1, (Kt, 1))− V (ht−1, (Kt, 0))] . (11)

We will use this form of the incentive compatibility constraint in our analysis of the efficient contract.

7The idea of using an agent’s continuation utility was first introduced by Spear and Srivastava [28]. Atkeson and Lucas

[3] provide a justification of the recursive approach in dynamic moral hazard problems.

8Notice that we have assumed τ (ht−1, (Kt, 0)) = 0, since negative values (equivalent to giving extra cash to the

entrepreneur when θ = 0 is announced) can never be optimal as they only worsen the incentive problem.
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4.3 The Value of Equity and the Value of the Firm

Any non–negative value V can be attained liquidating the firm and giving Q = V to the borrower.

Negative values cannot be implemented due to the limited liability of the borrower. Thus, the set of

possible values for V is [0,+∞). Without loss of generality we assume that policy depends on history

ht−1 only via the promised equity V and capital K. Introducing additional variations cannot increase

the value of the firm.

At each state (V,K), let W (V,K) be the value of the firm. The problem of finding the value function

W (V,K) can be decomposed in two parts. First, we can compute the value of the firm when continuation

is imposed. Second, once that value has been obtained, we can use the continuation value and the

liquidation value to compute the optimal liquidation policy.

Let Wc (Vc, K) be the highest value of the firm that can be achieved when continuation is imposed.

To simplify notation, let V H (K ′) (V L (K ′)) be the value of promised equity when capital K ′ is chosen

and the report is θ̂t = 1 (θ̂t = 0). Therefore Wc (Vc, K) is obtained solving the problem

Wc (Vc, K) = max
κ,τ,V H ,V L

Eκ
[
pR (K ′)− I (K ′, K) + δpW

(
V H (K ′) , K ′

)
+ (1− p)W

(
V L (K ′) , K ′

)]
(12)

subject to

Vc = Eκ
[
p (R (K ′)− τ (K ′)) + δ

(
pV H (K ′) + (1− p)V L (K ′)

)]
(13)

τ (K ′) ≤ δ
(
V H (K ′)− V L (K ′)

)
, τ (K ′) ≤ R (K ′) (14)

V H (K ′) ≥ 0, V L (K ′) ≥ 0 each K ′ ∈ suppκ (15)

Notice that Wc (Vc, K) is computed taking as given the function W (V,K). Once we have the function

Wc, we can rewrite the maximization problem as:

W (V,K) = max
λ,Q,Vc

λS(K) + (1− λ)Wc (Vc, K) (16)

subject to V = λQ+ (1− λ)Vc, Q ≥ 0, 1 ≥ λ ≥ 0.

Standard results in dynamic programming imply that the solution to the functional equation (16) is

unique (see Quadrini [25] for details). Inspecting problem (16) we can make a few simple observations.

First, when the optimal policy requires λ(V,K) = 0 then W (V,K) = Wc (V,K). Second, the only

efficient way to give V = 0 is to liquidate immediately. The next proposition provides further properties.
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Proposition 2 W (V,K) and Wc(V,K) are non-decreasing in both arguments. For each K, W (·, K)

and Wc(·, K) are concave and the partial derivatives with respect to V are defined almost everywhere.

For each K there is a value V(K) such that the W is linear in V on [0, V(K)]. The first best policy is

achievable if and only if V ≥ pR(K∗)
1−δ , where K∗ is the first-best level of capital defined in (5).

The proposition shows that the results of Clementi and Hopenhayn [6] and Quadrini [25] continue to

hold, with obvious modifications. For a given K the value of the firm is non-decreasing and concave in

the value of equity. The linear part of the value function corresponds to the case in which liquidation

occurs with positive probability: When V < V(K) liquidation probability is λ = 1− V
V(K)

. When V ≥ V(K)

the firm continues with probability 1. The important difference is that the threshold values for which

liquidation occurs now depend on K.

5 The Empirical Distribution of Size

In the rest of the paper we will analyze the predictions of our model on the effects of size. We will pay

particular attention to comparing the predictions of the model with (a version of) Clementi-Hopenhayn,

henceforth CH. Specifically, since the assumptions that make size a state variable in our model is that

q < 1, we will compare our model to a version of CH in which capital is durable but q = 1, so that

capital is not a state variable9. CH assumes d = 1, but their model would remain essentially the same

with d < 1.

Theoretical results will be used whenever possible and simulations will be used when we cannot

provide analytical results. The first task is to establish the theoretical implications for the type of data

that we actually observe.

5.1 The Joint Distribution of V and K

When a firm is created, the state is (V0, 0), where V0 is the value assigned to the entrepreneur when

the process is started. The value depends on the amount of self-financing that the entrepreneur can

bring and on the bargaining power of the two parties. We can see V0 as the realization of a random

variable Ṽ0 with distribution f0(V ). Once V0 is realized, the optimal policy induces a stochastic process

9These are actually the assumptions used in Quadrini [25]. He uses different assumptions on the distribution of θ̃.
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{(
Ṽt, K̃t

)}∞
t=1

that has two absorbing states: (0, 0), reached when liquidation occurs, and (V ∗, K∗),

where V ∗ ≡ pR(K∗)
1−δ is the equity value at which efficient investment is made in each period and the agent

never pays.10 From the stochastic process one can compute the distribution at time t:

ft(V,K) ≡ Pr(Ṽt = V, K̃t = K).

If many firms are born at time 0 then the distribution of their values after t periods should be close to

the theoretical distribution ft(V,K). However, what we typically have in the data is the distribution of

firms of age t conditional on survival, given by

ht (V,K) =
ft (V,K)

1− ft (0, 0)
for each pair (V,K) 6= (0, 0) .

We have solved the dynamic programming problem numerically, assuming R(K) = 1
α
Kα, S(K) =

a + bK. Appendix II provides a detailed explanation of our methodology as well as all parameters’

values. With our parametrization, we have K∗ = 81.5 and V ∗ = 722.3. The values of V0 were drawn

from a uniform distribution on the interval
[
V , V

]
, where V = V ∗/50 ' 14.5 and V = V ∗/40 ' 18.
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Figure 1: Plots of ht (V,K) at different ages when q = 0.8.

Figure 1 shows the joint distribution of V and K when q = 0.8, so that K is a state variable. The

distributions show quite a lot of variability in both dimensions, although it is clear that over time the

surviving firms tend to move towards bigger sizes.

In the version of CH with q = 1 the optimal choice of size only depends on V and K is not a state

variable. When we run the same simulations with q = 1 the resulting joint distribution of V and K

tend to show much less variability with respect to age. It is far more frequent and faster to achieve the

optimal size and in general there is much less variation in K.

10Notice that points of the form (0,K) with K > 0 have zero probability, since it is impossible to give V = 0 to the

agent when K is strictly positive.
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Figure 2: Plots of ht (V,K) at different ages when q = 1.

The results of the simulation are shown in Figure 2. Surviving firms reach the optimal capital size K∗

for relatively low values of V , well below V ∗. This implies that at K∗ there is a long queue of V , since

the optimal policy prescribes that V must increase for every positive realization of θ until V ∗ is reached.

Comparing Figure 1 and Figure 2 we can see how the presence of a friction, in the form of partial

irreversibility, generates more variability for any given age. Although eventually the distribution, for

any value of q, must converge to the absorbing points, the convergence is much slower with partial

irreversibility. In particular this means that, conditional on size, we expect more variability in the policy

function. The reason is that conditional on K there is more variability in V under partial irreversibility

than under the case q = 1·

Remark. One unrealistic feature of the model is that the limiting distribution of size for surviving firms

is concentrated on K∗. Thus, all heterogeneity must come from younger entering firms. Li [22] discusses

some modifications that would avoid this undesirable feature. If the borrower is less patient than the

lender then payments to the lender would be limited and the growth of V would be slower; the firm would

never reach the first best level and every firm would have a positive probability of (eventual) death. A

similar effect applies if the lender has limited commitment. Such features could easily be introduced in

our model. Another alternative is to introduce an exogenous death rate due to circumstances outside

the model, as in Pugsley, Sedláček and Stern et al. [24].

5.2 The Marginal Distribution of K

While empirical counterparts for K are relatively easy to identify, this is not so for V . In general V is

the value given to the original entrepreneur and founder of the firm. We will later discuss a possible
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interpretation that follows Clementi and Hopenhayn [6], V as firm’s equity and W (V,K)− V as firm’s

debt. However, even adopting this interpretation, the market value of equity V may be difficult to

observe, especially for small and medium-sized firms.

For this reason we will also look at distributions over K, obtained as the marginal of the corresponding

distributions over (V,K). Let V be the set of all possible values of V that can be generated by the

stochastic process
{
Ṽt, K̃t

}+∞

t=0
. Then we can define

γt (K) =
∑
V ∈V

ht (V,K)

as the probability distributions over size of firms surviving after t periods. The marginal distributions

obtained from Figure 1 are shown in Figure 3.
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Figure 3: Plots of γt (K) at different ages when q = 0.8.

As previously pointed out, partial irreversibility generates much more dispersion in size compared to

the case q = 1. This can be confirmed looking at Figure 3 and comparing it to Figure 4, obtained as

the marginal over K of Figure 2.

Conditional on survival the distribution of size tends to concentrate more on K∗, the optimal size, as

age increases. However the convergence is much slower with partial irreversibility. The message is that

partial irreversibility plays an important role in making age an important variable when analyzing the

evolution of firms. On one hand the slower convergence generates more dispersion in size for younger

firms. On the other hand, under partial irreversibility firms tend to be more heterogeneous even condi-

tional on K. We can therefore expect greater volatility in policy for younger firms than for older firms

when partial irreversibility is introduced.
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Figure 4: Plots of γt (K) at different ages when q = 1.

6 The Effect of Size on Survival and Growth

In this section we focus on the effect of size on liquidation and investment.

6.1 Size and Survival

In our model the probability of liquidation is λ(V,K) ≡ max
{

1− V
V(K)

, 0
}

, where V(K) is the threshold

value below which liquidation occurs with positive probability. The probability of survival 1− λ(V,K)

is therefore

β(V,K) ≡ min

{
V

V(K)

, 1

}
. (17)

From (17) we can immediately conclude that, for each given K, the probability of survival increases in

V . The next result establishes that, conditional on V , the probability of survival is increasing in K.

Proposition 3 The probability of survival β(V,K) is non-decreasing in K for each V and it is strictly

increasing whenever V < V(K).

The basic intuition for the result in Proposition 3 is that an increase of capital increases the value of

continuation more than the value of liquidation. This is easier to see when the optimal policy prescribes

strictly positive investment with probability 1 under continuation. In that case a small additional amount

of capital I increases the value of continuation by (1− d)I (since it reduces the necessary investment by

that amount), while the value of liquidation increases only by q(1− d)I (the value at which capital can

be sold). This happens only because of partial irreversibility.
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Figure 5: Effect of a change in q on the optimal liquidation policy.

When q = 1 the liquidation value can be written as S (K) = S+ (1− d)K. Since both the continuation

value and the liquidation value are translated upward by (1− d)K, the value V ∗ below which liquidation

occurs with strictly positive probability is the same for each level K. Thus, size does not change the

probability of liquidation, a crucial difference with the partial irreversibility case.

Proposition 3 provides a positive relation between size and probability of survival conditional on V .

In empirical work it is difficult to control for V and the main existing results look at the unconditional

relation. In other words, what we actually observe in empirical work is not the survival function β(V,K)

but the function

β∗(K) = EV [β(V,K)|K] =
∑
V ∈V

h (V |K) β(V,K),

where h (V |K) = h (V,K) /γ (K). Even if β(V,K) is non-decreasing in K for each V , it may still be

the case that β∗(K) is decreasing. However, since β(V,K) is increasing both in V and K, the function

β∗ (K) is increasing in K if the probability distribution h (V |K) is increasing in K in the sense of

first-order stochastic dominance. While we cannot provide a full theoretical characterization of the joint

probability distribution, our simulations support the idea that h (V |K) is FOSD-increasing in K. Let

Ht (V |K) be the cumulative distribution function of ht (V |K). Figure 6 shows how Ht changes when

K increases, for t = 10, t = 15 and t = 25.
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Figure 6: Cumulative distribution of Ht (V |K) at increasing values of K, t = 10, 15, 25.

The pictures clearly show that Ht (V |K) is FOSD-increasing in K for each date. The simulations results

thus lend support to the hypothesis that β∗(K) is increasing in K.

6.2 Size and Growth

The expected rate of growth of a firm at state (V,K) is g(V,K) =
E[K̃′(V,K)]−K

K
, where expectation is

taken using the optimally chosen probability distribution over K ′. If V is not observed then the rate of

growth conditional on size K is given by

g∗(K) = EV [g(V,K)|K] =
∑
V ∈V

h (V |K) g (V,K) .

The properties of g∗ (K) depend both on the properties of g(V,K) and on the probability distribution

h(V,K). We first look at the implications of the model for future size and then analyze the rate of

growth.

6.2.1 Current Size and Future Size

Let K̃ ′(V,K) be the random variable chosen as optimal capital policy at (V,K), with K
′
(V,K) and K ′(V,K)

being the supremum and the infimum of the support. An increase in current size (capital stock K at

the beginning of period t) causes an increase in future size (capital stock K ′ chosen in period t).

Proposition 4 The optimal capital choice has the following properties. For each I > 0 :
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1. K̃ ′(V,K+I) (weakly) first order stochastically dominates K̃ ′(V,K).

2. If K ′(V,K) > (1− d) (K + I) or K
′
(V,K) < (1− d)K then K̃ ′(V,K+I) = K̃ ′(V,K)

The intuition for the first point is simple. The cost of investment I (K ′, K) is strictly decreasing in K.

Thus, other things equal, it cannot be optimal to choose a higher future level of capital stock when

the current capital stock is lower. The second point follows from the fact that increasing the level of

capital when investment is strictly positive or strictly negative does not change the constraint set and it

is equivalent to adding a constant to the objective function. The optimal solution must therefore remain

the same. When q = 1 the optimal capital choice K ′ depends on V only, not on the current size K. It

is only with partial irreversibility that the optimal choice can become sensitive to current size.

However, when q = 1 and V is not observed then the conditional expectation E [K ′ (V )|K] and the

conditional variance Var [K ′ (V )|K] will depend on K, as long as V is not independent of K. Thus,

comparing the expected capital policy K ′ in the case q = 1 and in the case q < 1 is not trivial.

Furthermore, since (as shown in section 5) the joint distribution of (V,K) depends on age, this will

generate different prediction on the impact of size for firms of different age. We will discuss the matter

further in section 7.

6.2.2 Current Size and Growth Rate

Long-run growth opportunities for large firms are absent in our model, once optimal size K∗ is reached

the rate of growth is zero. This remains true for any level of partial irreversibility q. However, before

reaching the optimal size the growth does depend on the level of irreversibility.

When q = 1 the optimal policy K ′ only depends on V and it is constant in the current level of capital

K. Thus, the rate of growth as function of V and K is trivially decreasing in K, as it is given by

K′(V )−K
K

. However, as previously pointed out, E [K ′ (V )|K] typically does depend on K and it is not

obvious how.

When q < 1 then expanding capital becomes more costly. Typically, the cost of expanding capital will

be asymmetric. If the optimal policy always prescribed a strictly positive investment under continuation

then the only difference between the cases q = 1 and q < 1 would come from the possibility of liquidation.

That would make capital investment less profitable, implying that the firm would expand more slowly.

However the optimal policy does sometimes prescribe negative investment under continuation. This is
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an additional reason why capital investment will be lower when q < 1. This will be particularly true

when V is low. However a higher level of K in general requires less investment, since the optimal new

level of capital K ′ is closer to existing capital.

The volatility of the rate of growth is another variable of interest. When V is not observable then

the variance of the rate of growth conditional on K is given by

σ2
g (K) =

∑
V

h (V |K) (g(V,K)− g (K))2 .

The only clear prediction of the model is that firms which have reached a sufficiently high level of V

choose the optimal size K∗ and therefore have a zero rate of growth, which in turn implies zero volatility.

This must mean that, as size increases, the volatility of growth must eventually go down. In our model

the main source of volatility, conditional on size, come from the fact that the investment policy depends

on V . A greater dispersion of V for a given K therefore generates higher variance in the growth rate.

In the next section we discuss the implications for the impact of age.

7 The Role of Age

In our framework the age of the firm matters because the joint distribution of ht (V,K) of firms of

age t evolves over time. As previously pointed out, V is typically not observed. What we observe

are conditional expected values of the form Et [g (V,K)|K] or Et [β (V,K)|K], where Et means that

expectations are taken using the probability distribution ht (V |K).

Let

gt (K) = Et [g(V,K)|K] =
∑
V

ht (V |K) g (V,K) (18)

be the expected rate of growth for a firm of age t and size K. Also, let zt (K) be the fraction of firms

with size K having age t and notice that
∑∞

t=0 zt (K) = 1 and
∑∞

t=0
∂zt(K)
∂K

= 0. Then the expected rate

of growth for a firm of size K not conditional on age can be written as

g∗ (K) = E [g (V,K)|K] =
∞∑
t=0

zt (K) gt (K)

This implies
dg∗

dK
=
∞∑
t=0

dzt
dK

gt +
∞∑
t=0

zt
dgt
dK

(19)
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If, conditional on age, the rate of growth does not depend on K then we have ∂gt(K)
∂K

= 0 for each t and

for each K. However, we can still have ∂g∗

∂K
< 0 because of the first term on the RHS of (19). This will

be the case if gt (K) is decreasing in t and zt (K) is increasing in K in the sense of first order stochastic

dominance, i.e. when K is higher more weight is put on higher values of t. This second feature comes

out pretty clearly from the simulations and it is to be expected, since surviving firms tend to grow to

the optimal size.
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Figure 7: Expected K ′ and variance as a function of age.

In Figure 7 we show the age evolution of expected size and variance of size with and without partial

irreversibility. Panel 7a shows that in the absence of partial irreversibility (q = 1, red line) size tends

to be on average greater than in the case of partial irreversibility (q = 0.8, blue line) for younger firms.

The effect holds only for younger firms, since older firms tend to converge to the optimal size with and

without partial irreversibility. Once the optimal size is reached, typically the risk of having to sell capital

becomes much lower and the price of used capital becomes irrelevant. For younger firms instead the

effect is strong. Since younger firms tend to be smaller and eventually size must converge to the optimal

one for surviving firms, expected growth is stronger for young firms when q = 0.8. This means that

the presence of partial irreversibility makes the relation between age and growth much stronger. The

relation is instead almost absent when q = 1. Panel 7b shows the volatility of size with respect to age

with (blue line) and without (red line) partial irreversibility. It shows that partial irreversibility greatly

increases the variance of K ′ in general, but especially so for young firms. Thus, our model yields a strong
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relation between age and volatility of size which is absent when q = 1.
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Figure 8: Standard deviation of liquidation probability for q = 0.8 and for q = 1

This higher volatility for young firms can also be observed when we look at the liquidation policy.

In Figure 8 we show the standard deviation of liquidation probability as a function of age. Partial

irreversibility (blue line) generates greater variability in liquidation rates for relatively young firms.

As age progresses the standard deviations of liquidation in the two cases, q = 0.8 and q = 1, tend to

converge. This is a consequence of the fact that with partial irreversibility there is much more variability

in the joint distribution of V and K, as shown in Figures 1 and 2.

As a last comparison on the effect of age we have used the data generated in the simulations to run a

regression on age and capital when q = 0.8 and when q = 1. Since at age 1 all firms start with a capital

of zero, the relationship between age and capital and the rate of growth are computed for firms of age

between 2 and 25.

When q = 1 the results of the regression are

Growth rate = 3.915615 + 0.047756 · ln(Age) − 0.923879 · ln(Capital)

with adjusted R-Squared 0.2884. Thus age has the opposite sign than expected, as it appears that older

firms tend to grow more. The positive sign on age remains if we run the regression in levels rather than

logs and if we run the regression on age alone, both in level and as log. Of course, the positive coefficient

for age does not mean that the CH model with q = 1 implies a positive conditional correlation. To
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interpret the result, remember that with q = 1 the optimal investment policy K ′ is entirely explained by

V , while K plays no role. The expected growth rate of a firm of age t conditional on K is given by (18).

Notice in particular that age is irrelevant if ht (V |K) does not depend on t. So, if V is (very close to) a

one-to-one relationship with K, then age should have a coefficient of zero. The positive coefficient most

likely is the result of the crude way in which the equation tries to capture the optimal policy function,

whose functional form is not known.

When q = 0.8 the results of the regression are

Growth rate = 0.4329954 − 0.0388068 · ln(Age) − 0.0629460 · ln(Capital)

with adjusted R-Squared 0.18. Now age has a negative coefficient, as expected and as it appears in the

data. Also, the coefficient on capital is much lower than in the case q = 1. Again, the sign of the age

coefficient remains negative when we run the regression in levels rather than logs and when we run the

regression on age alone.

Summing up, the results of this section show that a model with partial irreversibility has a better

potential for matching the data than a model in which capital can be bought and sold at the same price

and therefore it is not a state variable.

8 Conclusions

Size has always been recognized as an important determinant of firm’s behavior. This paper has intro-

duced durable capital in a model of optimal dynamic financing with moral hazard in order to develop

testable predictions about the effect of firm’s size on the optimal financing and investment policies. The

key assumption making size relevant is that used capital is less valuable than new capital, even once

depreciation has been accounted for; there is ample empirical evidence that this is in fact the case.

We show that larger firms have a higher probability of survival, are more likely to have a large size in

the future and have lower investment rates. We also show that partial reversibility plays an important

role in generating heterogeneity among firms of the same age, generating a relationship between age, rate

of growth and variance of growth. The results are qualitatively consistent with the empirical literature.

Further research should extend the analysis in two directions. First, it would be useful to perform

a quantitative exercise, considering a parametric version of the model with realistic values for the pa-
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rameters and checking whether the dynamics predicted by the model are quantitatively consistent with

what has been found in empirical studies. Second, it would be interesting to move the analysis to the

industry level, analyzing the endogenous determination of liquidation values as well as the impact of

entry and exit.
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Appendix I

Proof of Proposition 2. We will use results from Stokey, Lucas and Prescott [29], so we first recast

the problem using a similar notation to make the way in which their results are applied clearer. Define

the vector of control variables as

x = (λx, Qx, Kx, τx, Vx(0), Vx (1)) .

Given a choice y = (λy, Qy, Ky, τy, Vy (0) , Vy (1)), the return function is defined as

F (x, y) = λyS (Kx) + (1− λy) [pR (Ky)− I (Ky, Kx)] .

Define Γ as the set of vectors (λy, Qy, Ky, τy, Vy(0), Vy (1)) that satisfy the following:

λy ∈ [0, 1] , Qy ≥ 0, Ky ≥ 0

τy ≤ min {δ (Vy (1)− Vy (0)) , R (Ky)}

Vy(0) ≥ 0, Vy (1) ≥ 0.

and ∆Γ (Vx (θ)) the set of probability distributions over Γ that satisfy

Vx (θ) = Eγ [λyQy + (1− λy) [p (R (Ky)− τy) + δ (pVy (1) + (1− p)Vy(0))]] ,

where γ ∈ ∆Γ (Vx (θ)) denotes a probability distribution over Γ.

The value function can be written as

W (x, θ) = max
γ∈∆Γ(Vx(θ))

(1− λx)Eγ [(F (x, y) + δE [W (y, θ′)])]

Standard results in dynamic programming imply that W (x, θ) exists and is unique. It is also clear that

neither ∆Γ (Vx (θ)) nor F depend on Qx, τx and Vx (θ′) when θ′ 6= θ. Thus we can define

W ∗ (λx, Kx, Vx (θ)) ≡ W (x, θ) .

Finally, we also have

W ∗ (λx, Kx, Vx (θ)) = (1− λx)W ∗ (0, Kx, Vx (θ)) .
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Thus, function W (V,K) defined as

W (V,K) = W ∗ (0, K, V )

is the one that we have been discussing in the text.

The function is increasing in K, because the return function is increasing in Kx and the constraint

set ∆Γ (V ) does not depend on Kx. To see that the function is increasing in V , notice that the return

only depends on λ and K, but not on Q or τ . When V is increased it remains possible to use the same

policies for λ and K, achieving the higher V through decreases in τ or increases in Q. Thus, increasing

V expands the set of payoff-relevant policies. A similar argument establishes that Wc is increasing in Vc.

To see that W (V,K) is concave in V when K is fixed, suppose that there are two values V1 and V2

such that

αW (V1, K) + (1− α)W (V2, K) > W (αV1 + (1− α)V2, K) (20)

for some α ∈ (0, 1). For the given α, consider the value Vα = αV1 + (1− α)V2. The value Vα can be

promised to the entrepreneur by offering the policy implemented at V1 with probability α and the policy

implemented at V2 with probability (1− α); notice that such policies are clearly feasible. The expected

value of the firm in that case would be the left hand side of (20). This is greater than the right hand

side, contradicting the claim that W (αV1 + (1− α)V2, K) is the highest value of the firm that can be

achieved while giving Vα to the entrepreneur. The same argument establishes the concavity of Wc.

The argument cannot be applied to establish the concavity with respect to K given V or the global

concavity with respect to (V,K). If there is a triplet (α,K1, K2) such K = αK1 + (1− α)K2 and

αW (V,K1) + (1− α)W (V,K2) > W (V,K) . (21)

Then, unfortunately, we cannot conclude that the stochastic policy choosing the policy optimal at K1

with probability α and the policy optimal at K2 with probability (1− α) is better than the policy chosen

at K. The reason is that the return function, more specifically I (K ′, K), depends on K. Thus, the LHS

of (21) is not the expected value obtained when the stochastic policy above described is implemented

but the level of capital is K.

Since W (V,K) and Wc(V,K) are increasing and concave in V , the partial derivatives ∂W
∂V

and ∂Wc

∂V

are defined almost everywhere.

The proof that W (V,K) is linear in V on an interval
[
0, V(K)

]
is the same as in CH [6], with the only

change that now the upper bound of the region over which W (·, K) is linear depends on K.
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Finally, if the first best is implemented then an investment K∗ must occur in every period indepen-

dently of the history of announcements. This implies that the entrepreneur can achieve a value pR(K∗)
1−δ

simply by announcing θ = 0 in every period and stealing the output. Thus, in order to implement the

first best policy we need V ≥ pR(K∗)
1−δ . When this condition is satisfied the first best can be achieved by

a policy of investing K∗ in every period independently of past history, paying V − pR(K∗)
1−δ immediately

to the entrepreneur, and giving the entire output θtR(K∗) to the entrepreneur in each period.

Proof of Proposition 3. We show that V(K) does not increase in K and it strictly decreases if the

optimal policy prescribes strictly positive investment at
(
V(K), K

)
. For each value V the probability of

liquidation does not increase in K and it strictly decreases if λ(V,K) ∈ (0, 1) and V(K) strictly decreases

in K.

The function Wc(V,K) is almost everywhere differentiable and by the envelope theorem

∂Wc(V,K)

∂K
= (1− d) Pr (K ′ > (1− d)K) + q(1− d) Pr (K ′ ≤ (1− d)K) .

The liquidation value S(K) is linear in K and

∂S(K)

∂K
= q(1− d).

Thus ∂S
∂K
≤ ∂Wc

∂K
for each V . Since V(K) is the point at which the line with intercept S(K) is tangent to

Wc(V,K), if the function Wc increases no less than the value S(K) then the point V(K) cannot increase.

In particular, if at
(
V(K), K

)
we have Pr (K ′ > (1− d)K) > 0, i.e. the probability of a strictly positive

investment is strictly positive, then
∂Wc(V(K),K)

∂K
> ∂S(K)

∂K
and the value of V(K) strictly decreases as K

increases.

The probability of liquidation can change with K only at points (V,K) at which λ(V,K) < 1. At

such points we have

λ(V,K) = 1− V

V(K)

and the conclusion therefore follows from the results on V(K).

Proof of Proposition 4. Consider problem (12). We want to apply Theorem 4 in Milgrom and Shannon

[23] and we will do so by showing that the objective function is quasi-supermodular in the decision

variables
(
κ, τ (·) , V H (·) , V L

)
and it satisfies increasing difference in

((
κ, τ (·) , V H (·) , V L (·)

)
;K
)
.
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The space where
(
κ, τ (·) , V H (·) , V L (·)

)
is defined is the Cartesian product of the space of probability

distributions κ on [0,+∞), the space of functions τ (x) such that τ (x) ≤ R (x) each x and the space of

non-negative functions V H and V L. We define the ordering on these spaces as follows:

1. κ � κ′ if κ′ first order stochastically dominates κ.

2. τ � τ ′ if τ (x) ≤ τ ′ (x) each x, and similarly for V H and V L.

3.
(
κ, τ (·) , V H (·) , V L (·)

)
�
(
κ′, τ ′ (·) , V H′ (·) , V L′ (·)

)
if each component of the first vector is lower

than the corresponding component of the second vector.

Since the objective function does not depend on τ and it is increasing in both V H and V L (thus implying

quasi-supermodularity) we only have to prove quasi-supermodularity with respect to κ. For convenience,

we remind here the reader of some basic definitions needed to apply the Milgrom-Shannon theorem.

Given a partially ordered set X and two elements x,y in X, we define x∧ y as the largest element of

X such that x ∧ y � x and x ∧ y � y. Similarly, x ∨ y is the smallest element in X such that x � x ∨ y

and y � x ∨ y. The set X is a lattice if, given x, y in X, we have that x ∧ y and x ∨ y are also in X.

A function f defined on the lattice X is quasi-supermodular if, given two elements x, y ∈ X, whenever

the inequality f (x) ≥ f (x ∧ y) is satisfied we also have f (x ∨ y) ≥ f (y).

Let now consider the space of probability distribution on the positive real line endowed with the first-

order stochastic dominance order. Consider two distributions κ and κ′ represented by the cumulative

distribution functions F and G respectively. Then κ ∨ κ′ has cumulative distribution function H (x) =

min {F (x) , G (x)}, while κ ∧ κ′ has cumulative distribution function L (x) = max {F (x) , G (x)}. We

will prove that for any function f (x), if
∫
f (x) dF ≥

∫
f (x) dL then

∫
f (x) dH ≥

∫
f (x) dG. The first

inequality can be written as∫
f (x) dF ≥

∫
{x|F (x)≥G(x)}

f (x) dF +

∫
{x|F (x)<G(x)}

f (x) dG (22)

or ∫
{x|F (x)<G(x)}

f (x) dF ≥
∫
{x|F (x)<G(x)}

f (x) dG.

The second inequality can be written as∫
{x|F (x)≥G(x)}

f (x) dG+

∫
{x|F (x)<G(x)}

f (x) dF ≥
∫
f (x) dG (23)
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or ∫
{x|F (x)<G(x)}

f (x) dF ≥
∫
{x|F (x)<G(x)}

f (x) dG.

But this implies that whenever inequality (22) is satisfied, inequality (23) must also be satisfied. There-

fore any function defined on the real numbers is quasi-supermodular when defined over the space of

probability distributions over the real line.

Finally, to prove that the objective function satisfies increasing difference in (κ;K) we have to show

that the difference between the objective function at K ′ and the objective function computed at K is

increasing in κ whenever K ′ > K. To see this, observe that such difference is given by the function

I(K ′′, K)− I(K ′′, K ′) =


(1− d) (K ′ −K) if K ′′ ≥ (1− d)K ′

(1− q)K ′′ − (1− d) (K − qK ′) if (1− d)K ′ > K ′′ ≥ (1− d)K

q(1− d) (K ′ −K) if (1− d)K > K ′′,

which is increasing in K ′′. Therefore, Eκ

[
I
(
K̃,K

)
− I

(
K̃,K ′

)]
is increasing in κ. This proves that

the optimal policy κ is increasing in K.

Suppose now that K ′s > (1−d)K, so that at s investment is always strictly positive. Suppose now that

the quantity of capital is increased by a small amount I such that the inequality K ′s > (1−d) (K + I) still

holds. It must be the case that the optimal policy remains the same, so that the value of the value function

increases by (1− d)I. If this were not the case then we would have W (V,K + I) > W (V,K) + (1− d)I,

but this implies that by adopting at state (V,K) the policy adopted (V,K + I) we would get a value

strictly higher than W (V,K), a contradiction. A similar reasoning implies that the optimal policy does

not change when K
′
s < (1− d)K and we increase K by I.

29



Appendix II

The computational work in this paper consists of two main steps. First, we computed the value function

and the global optimal policies. Second, we generated the empirical joint distribution of firms’ sizes and

values and their growth rates. Table 1 shows the parameter values we used.

Parameter Description Value

p Probability of good outcome 0.8

a Curvature of R (R(K) ≡ Ka

a
) 0.5

q Resale Price 0.8

S0 Scrap Value 100

d Depreciation Rate 0.07

δ Discount Factor 0.98

Table 1: With this parametrization K∗ = 81.5 and V ∗ = 722.3.

In the first step the value function and the global optimal policies for λ,K ′, V L and V H have been

computed using a value function iteration algorithm. We did not use projection methods, due to the

presence of occasionally binding constraints (incentive compatibility and non-negativity of promised

utilities). Figure 9 shows the computed value function W . It increases steeply only for small value of V

(equity). All flat regions start at similar values of V . Since the optimal policies for λ and K ′ have kinks

(see Figures 10 and 11, respectively), we used a grid-based non-parametric approach with interpolation,

instead of polynomial-based approximations.

The grid for V has 40 nodes, uniformly spaced between 0 and 0.95V ∗. The grid for K has 30 nodes,

uniformly spaced between 0 and 1.5K∗. We included values well above K∗ to verify that the these values

are never reached in our simulations, as predicted by the theory.

The four dimensional control space (λ,K ′, VL, VH) generated an additional source of complexity. Even

after eliminating one control using the promise–keeping equality constraint, the optimization problem

at each step of the value function iteration algorithm remains three-dimensional.
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Figure 9: Slices of the value function W
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Figure 10: Slices of the λ policy
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Figure 11: Slices of K ′ policy as function of V
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Figure 12: Slices of K ′ policy as function of K

Figure 12 shows the optimal K ′ policy as a function of K, instead of V (as is done in Figure 11).

The picture reveals the presence of three regions: i. for small values of K, K ′ is constant at a target

value (which depends on V ); ii. for intermediate values, K ′ = K; and iii. for large values, K ′ =

(1 − d)K. In the second step we used the optimal policies to perform simulations. For each time

horizon T = 10, 20, ... , 100, we have simulated the life of 2000 firms. After discarding all firms that

are liquidated before period T, we have built the joint distribution of the firms’ sizes and values, the
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associated conditional distributions, the expected growth rates, and standard deviations conditional on

firm size.
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Extra Figures. Not for Publication
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Figure 13: Expected revenue and variance of revenue as a function of age.
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Figure 14: Expected K ′ and variance as a function of age.
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Figure 15: Standard deviation of liquidation probability for q = 0.8 and for q = 1
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