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Abstract

We study optimal taxation in economies with general equilibrium market clearing, where

agents with privately known labor skills and entrepreneurial abilities choose between deterministic

labor income and risky firm operation. The government observes labor income and realized

dividends but not effort, or technology shocks. We formulate the multidimensional screening

problem as a lottery-based linear optimization, accounting for global incentive constraints, fixed

costs and other non-convexities. Optimal policies exhibit tax breaks, which can render net taxes

negative, for agents with intermediate entrepreneurial abilities and labor skills above a threshold.

General equilibrium strengthens this effect under decreasing returns, as labor-market clearing

requires sufficient entry into entrepreneurship, further increasing subsidies for agents with high

worker options. In a calibrated U.S. economy, optimal taxes are lower and can be negative for

low-profit realizations. Subsidies rise when risk declines and when the frequency of high-ability

entrepreneurs in the population diminishes.
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1 Introduction

Entrepreneurial income is both risky and highly concentrated, with a small share of founders earning

large rewards. At the same time, entrepreneurial choices have significant general-equilibrium effects.

Firm entry and expansion raise labor demand, affect equilibrium wages and aggregate output. This

creates a policy tension that is muted in partial equilibrium. A government that values redistribution

and insurance may wish to tax high business incomes aggressively, implement transfers financed

by the proceeds, and provide substantial protection against entrepreneurial risk. Yet such policies

can also weaken entry incentives for high-productivity entrepreneurs, reducing labor demand and

— through equilibrium wage adjustments — lowering aggregate labor income. Because labor skill,

entrepreneurial ability, and effort are privately known, and fiscal instruments can condition only

on realized labor income and realized firm profits, optimal tax and transfer design must balance

redistribution and entry incentives, not only to affect entrepreneurs’ behavior, but because the

occupational allocation of talent is itself a determinant of economy-wide earnings and welfare.

This paper studies optimal taxation in economies where individuals differ along two dimen-

sions—labor skill and entrepreneurial ability—choose ex ante between paid work and operating

a firm, and entrepreneurs face idiosyncratic productivity risk. The government observes labor

income and realized dividends, but not effort, entrepreneurial skills, or shock realizations. Optimal

policies can be characterized only after solving mechanism-design problems with multidimensional

private information, occupational choice, and risk-contingent observables. A key implication is that

redistribution and insurance cannot be designed independently of the allocation of talent across

occupations: taxes affect entry and firm operation, which in turn affect labor demand, wages, and

output in general equilibrium.

Our main results shed light on reasons why a utilitarian planner may tolerate—and even

engineer—pockets of high entrepreneurial payoffs. First, the optimal allocation exhibits sharp

sorting in the two-dimensional type space. For each labor skill level in the population, there is

a threshold in entrepreneurial ability above which agents choose to run firms. This threshold

increases with the labor skill, because being capable of generating more labor income requires larger

informational rents to be induced to run a firm. As a result, optimal taxes make entrepreneurship

locally attractive at the extensive margin. The planner grants information rents to marginal

entrepreneurs to prevent high-ability agents from selecting into labor and thus sustain socially

valuable entry into entrepreneurship.

Second, these entry incentives have significant general-equilibrium effects. With decreasing

returns, even the most productive firms, run by the most skilled entrepreneurs, cannot absorb the

entire aggregate labor supply on their own. The labor market clearing must generate a sufficiently

large extensive margin of entrepreneurship, in order to stimulate entry by the most talented agents.

This amplifies the entry-margin tax break for agents who are close to indifferent between working

and operating a firm.

Third, the distribution of entrepreneurial talent and labor skills in the population determines

who receives these subsidies. The largest entry subsidies accrue to agents with the highest options
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as workers. Although the planner is utilitarian, the presence of private information requires granting

rents to these marginal entrepreneurs, which must then be financed by higher net taxes elsewhere.

Put differently, in order to support job creation and stimulate output the planner must treat agents

with intermediate entrepreneurial skills more favorably than others.

Our analysis is organized in three steps. First, we introduce the model. Agents differ along two

dimensions, labor skill and entrepreneurial ability, face fixed participation costs in both occupations,

and choose between paid work and operating a firm. Entrepreneurs hire labor at the market clearing

wage and are subject to idiosyncratic productivity shocks that are realized after all occupational

choices are made. The government observes only realized labor income and realized dividends.

Therefore any feasible tax policy cannot be based on any productivity shock realizations, or the

agents’ types, their efforts as workers and their choices as entrepreneurs. The planner’s problem is a

two-dimensional screening problem with risk-contingent observables, where the wage is determined

endogenously by the labor market clearing. We compute optimal tax policies using a discrete-lottery

linear optimization framework that accommodates a two-dimensional type space and entrepreneurial

risk. Unlike approaches that rely on smoothness or convexity, our linear optimization framework

handles nonconvexities—such as fixed entry costs—and delivers a characterization of allocations and

tax schedules in environments where first-order methods are unreliable. Using our framework we

can quantify the impact that features of the environment – such as the curvature of the production

function, the joint distribution of abilities, and the magnitude of entrepreneurial risk – have on

optimal tax policies.

Second, to build intuition we analyze a tractable special case that highlights the mechanism

behind the optimal entry subsidy. We show that, with only two entrepreneurial skill levels and

no heterogeneity on the labor side, when the high-talent incentive constraint binds, the planner

must distort the occupational menu in favor of entrepreneurship. Productive entrepreneurs receive

positive information rents, consuming more than workers. These rents are not merely redistributive;

they also weaken entrepreneurial effort. In our general-equilibrium setting, this reduces productivity,

output, and wages and requires higher labor supply from workers. The analysis of this special

case thus delivers a transparent trade-off: relaxing screening constraints requires shifting resources

toward marginal entrepreneurs, but the same shifts propagate through labor-market clearing and

can lower aggregates. It also yields sharp comparative statics. Screening distortions are smaller

when production is more labor-intensive, and are larger when high-talent entrepreneurs become

scarce.

Third, we calibrate the model to U.S. moments on labor force participation, entrepreneurship,

firm size, and the dispersion of business income, and solve for optimal taxes and transfers in general

equilibrium. The calibrated optimum features sharp occupational sorting and a highly localized

entry-margin subsidy: tax liabilities fall discretely—and often turn negative—right where individuals

are close to switching into entrepreneurship. Entrepreneurial risk matters both because the planner

values insurance and because state-contingent taxes relax incentive constraints. Taxes are higher in

high-profit states, while subsidies expand in low-profit states where the temptation to select into
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labor is strongest. As highlighted in the analysis of the special case, when high-ability entrepreneurs

are scarcer, subsidies extend deeper into entrepreneurship (even in high-profit states) to sustain

labor demand. We also find that when labor and entrepreneurial skills are positively correlated

(the “superstars” scenario), subsidies concentrate at the very top, whereas in the opposite scenario

(negative correlation) subsidies shift toward entrepreneurs with weaker worker outside options.

Related literature. This paper contributes to the literature on optimal taxation and mechanism

design in environments with multidimensional private information and endogenous occupational

choice. Multidimensional screening problems have been studied first by Armstrong (1996), Rochet

and Choné (1998), and Manelli and Vincent (2007). These papers highlight that in multidimensional

screening problems without any specific structure, the optimal mechanism tends to be highly

sensitive to the belief of the designer. More recent work in public finance includes Kleven et al.

(2009), Scheuer (2014), Rothschild and Scheuer (2013, 2014), Bergstrom and Dodds (2021), Boerma

et al. (2022), Dodds (2024), Bierbrauer et al. (2024), Spiritus et al. (2025), and Golosov and Krasikov

(2025).1 These papers examine different economic problems (e.g., taxation of couples or multi-sector

abilities), and identify analytically tractable solutions. The main distinguishing feature of our work

is the numerical analysis of the general model, which relies on a linear formulation that can account

for global incentive constraints as well as non-convexities generated by the economic primitives.

Most closely related to our work are Prescott and Townsend (1984), Scheuer (2014), and Boerma

et al. (2022).

It is well known that optimal allocations in multidimensional environments may exhibit global

phenomena such as bunching and binding nonlocal incentive constraints which cannot be handled by

local first-order methods. Solving large-scale problems of this kind requires identifying all binding

incentive constraints, which is analytically challenging and computationally demanding, especially

so in settings with nonconvexities. Prescott and Townsend (1984) introduced pioneering techniques

to represent nonlinear incentive problems as linear optimization problems using lottery-based

transformations (see, e.g., Phelan and Townsend 1991, Doepke and Townsend 2006, and Myerson

2013). However, this approach requires introducing a large number of control variables. Our paper

combines this discrete-lottery formulation with well-known constraint generation techniques, and

leverages modern large-scale linear programming solvers (such as Gurobi or CPLEX), to solve

the multidimensional screening problem by accounting for all incentive constraints numerically.

As such, our analysis provides a tractable way to enforce full global incentive compatibility in

multidimensional type spaces, while allowing for non-smooth primitives and non-convexities that

naturally arise in economic applications, such as endogenous occupational choices with entry costs.2

Our approach is also related to recent work by Boerma et al. (2022) who obtain an alternative

linear representation to compute optimal tax mechanisms in multidimensional settings. Their

1Beyond these closest connections, our paper relates to the broader literature on taxing entrepreneurial income
under one-dimensional private information; see, e.g., Shourideh (2012); Piketty et al. (2014); Ales et al. (2017).

2Carlier et al. (2024) also develops a solution algorithm applicable to all (including non-convex) quasi-linear
multidimensional screening problems.
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representation hinges on Legendre-type transformations of underlying convex functions. On the one

hand, our discrete-lottery formulation does not rely on any underlying convexities, allowing us to

incorporate empirically relevant features such as fixed costs.3 On the other hand, the computational

cost grows faster with the problem size in our setting than in theirs, as our lottery representation

requires introducing a number of controls that grows proportionally to the grid size.

Finally, Scheuer (2014) studies optimal taxation in a general-equilibrium model with endogenous

occupation choice by agents who are privately informed about their labor productivity and their

cost of entering entrepreneurship. Our theoretical framework builds on his seminal model, with the

following differences. First, the multidimensional screening problem in Scheuer (2014) is simplified

by the assumption that the two components of each agent’s privately known type enter in the

payoff function separably.4 This implies that all meaningful incentive constraints depend only

on a one-dimensional privately known variable. By contrast, due to single-crossing conditions on

both labor and entrepreneurial payoffs implied by the multiplicative interaction between efforts

and abilities, the incentive constraints in our model involve explicitly both privately-known skill

types.5 Second, as is common in the heterogeneous firm macroeconomic literature (e.g. Khan and

Thomas 2013), we introduce idiosyncratic productivity shocks in the production function. Finally, as

described earlier, we use a lottery-based linear optimization representation of the planner’s problem.

Structure. The remainder of the paper is organized as follows. Section 2 presents the full model.

Section 3 develops the discrete-lottery linear formulation. Section 4 analyzes a tractable special case

of the model to clarify the mechanism with analytical results. Section 5 describes the calibration

and reports the quantitative results. Section 6 concludes.

2 Model

In this section we describe the model. We allow for heterogeneity in labor skills and entrepreneurial

abilities, fixed participation costs in both occupational choices, and idiosyncratic firm-level produc-

tivity shocks.

2.1 Overview and notation

Types. There is a unit mass of agents with privately known type

(s, z) ∈ S × Z ⊂ R2
+,

3While it may be possible to extend the approach of Boerma et al. (2022) to solve the particular application that
we study here, we view our paper as a proof of concept for a larger class of economic problems.

4Specifically, the entrepreneurial characteristic that is privately known is the fixed cost of operating a firm, which
enters in an additive separable manner in the payoff function.

5Rothschild and Scheuer (2013, 2014) analyze models of endogenous sorting across tasks or sectors; but these
papers do not focus explicitly on entrepreneurial income.
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distributed with joint density f(s, z). We interpret s as idiosyncratic labor productivity (“skill”)

and z as idiosyncratic entrepreneurial productivity.

Labor market and wage. There is a competitive labor market with wage w > 0 per efficiency

unit of labor. Labor supplied by workers and labor hired by firms are measured in efficiency units.

Occupational choice and private actions (exclusive occupations). Each agent chooses one

occupation ex ante, before the realization of entrepreneurial risk. The agent either (i) works as a

worker by choosing labor effort ℓ ≥ 0, or (ii) operates a firm by choosing entrepreneurial effort e ≥ 0

and labor demand n ≥ 0 (efficiency units) to hire in the competitive labor market. Occupations are

mutually exclusive:

ℓ > 0 ⇒ (n, e) = (0, 0), and n > 0 ⇒ ℓ = 0.

Labor effort ℓ (if working), entrepreneurial effort e (if operating), and labor demand n (if operating

a firm) are privately chosen and unobservable to the government.

Fixed participation costs. Working requires a fixed participation cost κ1 ≥ 0 whenever ℓ > 0.

Operating a firm requires a fixed cost κ2 ≥ 0 whenever n > 0.

Preferences. Preferences are separable in consumption and effort:

u(c, ℓ, e) = U(c)− V (ℓ)− V (e), (1)

where U ′ > 0, U ′′ < 0 and V ′ > 0, V ′′ > 0. The concavity of U implies risk aversion, so insurance

against entrepreneurial risk is valued.

Observables and policy instruments. The government observes realized labor income y and

realized entrepreneurial dividend/profit d, but does not observe (s, z), ℓ, e, n, nor the entrepreneurial

shock separately. A tax/transfer schedule T (y, d) is feasible. Equivalently, the government can use

a direct mechanism that assigns consumption as a function of the observable outcomes (y, d).

2.2 Technology, income, and entrepreneurial risk

Labor income. If the agent works (i.e. ℓ > 0), observed labor income is

y = w · s · ℓ − κ1 · 1[ℓ > 0]. (2)

If the agent does not work (ℓ = 0), then y = 0.
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Entrepreneurial technology. If the agent operates a firm (n > 0), output is

q = z · ε · eα · n1−α, α ∈ (0, 1), (3)

where e ≥ 0 is entrepreneurial effort and ε > 0 is an idiosyncratic productivity shock. Dividend-

s/profits (observable) are

d = q − w · n− κ2 · 1[n > 0] = z · ε · eα · n1−α − w · n− κ2 · 1[n > 0]. (4)

If the agent does not operate (n = 0), then d = 0.

Shock timing and information. The entrepreneurial shock ε is realized after the occupational

choice and reporting. The government does not observe ε separately; it only observes its implications

through realized dividends d.

Shock distribution. Entrepreneurial risk is i.i.d. across agents and independent of (s, z). We

assume ε is lognormal:

log ε ∼ N (µε, σ
2
ε), ε > 0, E[ε] = 1,

so that µε = −1
2σ

2
ε .

Mutual exclusivity in observables. Exclusive occupations imply that an agent cannot simulta-

neously have positive labor income and positive entrepreneurial dividends. Hence implementable

outcomes satisfy

y > 0 ⇒ d = 0, and d > 0 ⇒ y = 0. (5)

We restrict attention to allocations satisfying (5).

Risk and insurance. Because d is observed, the tax/transfer schedule can condition transfers on

realized dividends. Hence the planner can provide insurance against entrepreneurial risk, subject to

incentive constraints.

2.3 Implementable allocations and constraints

Direct mechanism. A (deterministic) direct mechanism specifies, for each report (ŝ, ẑ), an

intended occupational outcome and a mapping from realized observables to consumption:

c = c(y, d).

Under truthful reporting, a type (s, z) receives the allocation intended for (s, z); under a misreport

(ŝ, ẑ) it receives the allocation intended for (ŝ, ẑ).
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Implied labor effort from a labor-income assignment. If the intended outcome assigns

positive labor income y(ŝ, ẑ) > 0 (hence, by (5), d = 0), then a true type (s, z) must supply effort

ℓ =
y(ŝ, ẑ) + κ11[y(ŝ, ẑ) > 0]

w · s
. (6)

If y(ŝ, ẑ) = 0, then ℓ = 0.

Implied entrepreneurial effort from a dividend realization. If the intended outcome assigns

entrepreneurial activity (i.e. d > 0 and hence y = 0), then for a true type (s, z) and realized shock ε

the observed dividend d must be generated by some pair of private inputs (e, n) satisfying (4), or

equivalently

z · ε · eαn1−α = d+ wn+ κ2, e ≥ 0, n ≥ 0. (7)

For any given n > 0, (7) uniquely pins down the entrepreneurial effort required to deliver dividend

d:

e(n; d, z, ε, w) =

(
d+ κ2 + wn

z · ε · n1−α

)1/α
. (8)

Hence many (e, n) pairs can rationalize the same observed d. To obtain a unique “implied effort”

mapping from dividends to disutility, we impose a selection rule: among all feasible (e, n) satisfying

(7), the agent chooses the pair that minimizes entrepreneurial effort e (and thus minimizes the effort

disutility V (e)).6 Minimizing (8) over n > 0 yields the least-effort labor demand

n∗(d;w) :=
1− α
α
· d+ κ2

w
for d > 0, (9)

and substituting n∗(d;w) into (7) gives the associated implied entrepreneurial effort

e∗(d; z, ε, w) :=

(
d+ κ2 + w · n∗(d;w)
z · ε ·

(
n∗(d;w)

)1−α
)1/α

. (10)

We set e∗(0; z, ε, w) = 0 and n∗(0;w) = 0.

Implied effort costs. Define implied worker effort from labor income y as

ℓ(y; s, w) :=


y + κ1
ws

, y > 0,

0, y = 0,

and implied entrepreneurial effort from dividends d as

e(d; z, ε, w) :=

e∗(d; z, ε, w), d > 0,

0, d = 0.

6Because V is strictly increasing, minimizing V (e) is equivalent to minimizing e.
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Aggregate resource constraint. With a continuum of agents, cross-sectional averages coincide

with expectations. In what follows, we therefore use expectation notation over the entrepreneurial

shock interchangeably with cross-sectional averages. The aggregate resource constraint is∫
S×Z

Eε
[
c
(
y(s, z), d(s, z, ε)

)]
f(s, z) ds dz ≤

∫
S×Z

Eε[y(s, z) + d(s, z, ε)] f(s, z) ds dz. (11)

where g denotes the density of ε and where d(s, z, ε) = 0 for agents who do not operate a firm.

Labor market clearing. Total effective labor supplied equals total labor hired:∫
S×Z

s · ℓ(s, z) · f(s, z) ds dz =
∫
S×Z

Eε
[
n∗(d(s, z, ε);w)

]
· f(s, z) ds dz. (12)

Incentive compatibility (ex ante). Truthful reporting must be optimal. Fix a true type (s, z)

and consider any report (ŝ, ẑ). Under a report (ŝ, ẑ), the induced observables are (y(ŝ, ẑ), d(ŝ, ẑ, ε)),

and the true type incurs the corresponding effort costs implied by ℓ(·; s, w) and e(·; z, ε, w).
The incentive constraints require that for all (s, z) and all reports (ŝ, ẑ),

Eε
[
U
(
c(y(s, z), d(s, z, ε))

)
− V

(
e(d(s, z, ε); z, ε, w)

)]
− V

(
ℓ(y(s, z); s, w)

)
≥

Eε
[
U
(
c(y(ŝ, ẑ), d(ŝ, ẑ, ε))

)
− V

(
e(d(ŝ, ẑ, ε); z, ε, w)

)]
− V

(
ℓ(y(ŝ, ẑ); s, w)

)
. (13)

2.4 Planner’s problem

Let W (s, z) ≥ 0 be welfare weights. The planner chooses a tax/transfer schedule (equivalently, a

direct mechanism) to maximize expected social welfare, anticipating that the wage w adjusts to

clear the labor market.

max
{c(·),y(·),d(·)},w

∫
W (s, z) ·

[
Eε
[
U
(
c(y(s, z), d(s, z, ε))

)
− V

(
e(d(s, z, ε); z, ε, w)

)]
−V

(
ℓ(y(s, z); s, w)

) ]
· f(s, z) ds dz

(14)

s.t. (5), (11), (12), (13) ∀(s, z), (ŝ, ẑ).

3 Discrete Lottery Formulation and LP Characterization

In this section, we describe our approach for quantitative analysis. We define a finite grid on the

continuum of feasible allocations, and optimize over the set of all lotteries with support contained

in the grid. This construction yields a finite linear problem (LP) which approximates the original

planner’s problem. The approximation becomes more accurate as the grid increases in size.
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Wage normalization. For the LP representation it is also convenient to rescale all monetary

variables in wage units. Formally, we redefine the following key variables7

c̃ :=
c

w
, ỹ :=

y

w
, d̃ :=

d

w
, κ̃m :=

κm
w

(m = 1, 2), z̃ :=
z

w
.

The normalized problem is identical to the original one with w ≡ 1, after the original variables

(c, y, d, κ1, κ2, z) are replaced by their tilded counterparts. Because w is the shadow price on labor

market clearing, setting w = 1 amounts to resetting the numeraire. The associated Lagrange

multiplier adjusts so that labor market clearing holds. Accordingly, in the LP below we interpret

the variables (ȳa, d̄b, c̄k, κ1, κ2, zi) as wage-normalized objects.

3.1 Finite sets

In order to set up the LP formulation we need to define: (i) type and shock spaces, and (ii) grids

for allocations.

Types. Let N denote the number of possible types indexed by i ∈ {1, . . . , N}. Each type (si, zi)

is given weight ωi ≥ 0 with
∑N

i=1 ωi = 1.

Shock states. Discretize entrepreneurial risk into R shock states r = 1, . . . , R:

εr > 0, pr ≥ 0,
R∑
r=1

pr = 1,

with (εr, pr) common across types.

Grids for allocations. Let

C = {c̄k}Kk=1, Y = {ȳa}
Ay

a=1, D = {d̄b}Bd
b=1,

with c̄k > 0 and with ȳa, d̄b including 0. Precompute Uk := U(c̄k).

Exclusive occupations (discrete admissible set). At the discrete level, restrict attention to

admissible pairs

J ⊂ {1, . . . , Ay} × {1, . . . , Bd},

defined by

(a, b) ∈ J ⇐⇒
(
ȳa > 0⇒ d̄b = 0

)
and

(
d̄b > 0⇒ ȳa = 0

)
. (15)

Equivalently, J contains (i) worker bundles (ȳa > 0, d̄b = 0), (ii) entrepreneur bundles (ȳa = 0, d̄b >

0), and (iii) the inactive point (0, 0), but excludes all (ȳa > 0, d̄b > 0).

7All formal details are described in Appendix B.1.
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3.2 Precomputations for the LP

(i) Worker effort disutility. Given a labor-income gridpoint ȳa, a type-i worker must supply

effort

ℓi,a :=
ȳa + κ11[ȳa > 0]

si
,

and we precompute

V ℓ
i,a := V (ℓi,a). (16)

Under exclusivity, this term is relevant only for worker bundles (a, b) ∈ J with d̄b = 0; for

entrepreneur bundles with ȳa = 0, ℓi,a = 0.

(ii) Implied inputs and entrepreneurial effort disutility at a dividend node. Under the

least-effort selection rule in the continuous model, a dividend realization pins down a least-effort

labor demand and the associated entrepreneurial effort. With w ≡ 1, for each dividend node d̄b > 0

define

n∗b :=
1− α
α
· (d̄b + κ2), e∗i,b,r :=

(
d̄b + κ2 + n∗b
zi · εr (n∗b)1−α

)1/α
. (17)

If d̄b = 0, set n∗b = 0 and e∗i,b,r = 0 for all (i, r). We precompute entrepreneurial effort disutility

V e
i,b,r := V (e∗i,b,r). (18)

(iii) Total effort disutility coefficient. For each type i, admissible bundle (a, b) ∈ J , and
shock state r, define

Vi,a,b,r := V ℓ
i,a + V e

i,b,r. (19)

By exclusivity, exactly one of the two components is nonzero for worker or entrepreneur bundles,

and both are zero at (0, 0). Then Uk − Vi,a,b,r is the per-state utility coefficient used in the LP.

3.3 Decision variables

The numerical implementation uses a lottery representation. For each reported type i and shock

state r, the mechanism chooses:

- a lottery over consumption nodes C:

λi,k,r ≥ 0, k = 1, . . . ,K;

- a lottery over admissible income/dividend pairs (a, b) ∈ J :

µi,a,b,r ≥ 0, (a, b) ∈ J .

The planner’s objective and constraints depend only on these marginals because preferences are

additively separable (U(c) − V) and the feasibility constraints in the implementation depend on

c only through its expectation, and on (y, d) only through their expectations and pre-computed
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coefficients. Any pair of marginals (λ, µ) can be coupled into a joint lottery over (c, y, d) conditional

on (i, r), so this marginal representation is without loss for the discretized problem.

3.4 LP representation

Fix (si, zi, ωi,Wi)
N
i=1, grids (C,Y,D), the admissible set J in (15), the discretized shock system

(εr, pr)
R
r=1, and the precomputations (16)–(19) and (17). The objective and constraints below are

linear in the decision variables (λ, µ).

LP representation

The planner maximizes weighted expected utility:

max
λ,µ

N∑
i=1

ωi ·Wi ·

 R∑
r=1

pr ·

 K∑
k=1

λi,k,r · Uk −
∑

(a,b)∈J

µi,a,b,r · Vi,a,b,r

 . (20)

subject to:

(i) Simplex constraints. For every reported type i and shock state r,

K∑
k=1

λi,k,r = 1, λi,k,r ≥ 0, (21)∑
(a,b)∈J

µi,a,b,r = 1, µi,a,b,r ≥ 0. (22)

(ii) Resource feasibility. Expected consumption cannot exceed expected total (observable) income:

N∑
i=1

ωi

R∑
r=1

pr

K∑
k=1

λi,k,r · c̄k ≤
N∑
i=1

ωi

R∑
r=1

pr
∑

(a,b)∈J

µi,a,b,r · (ȳa + d̄b). (23)

(iii) Labor market clearing. Define effective labor supplied at a labor-income node as

Ls
a := ȳa + κ1 · 1[ȳa > 0].

Labor demanded at dividend node d̄b (under the least-effort rule) is n∗
b from (17). Labor market clearing is:

N∑
i=1

ωi

R∑
r=1

pr
∑

(a,b)∈J

µi,a,b,r · Ls
a =

N∑
i=1

ωi

R∑
r=1

pr
∑

(a,b)∈J

µi,a,b,r · n∗
b . (24)

(iv) Incentive compatibility. For any true type i and any report j, truthful reporting must yield

weakly higher expected utility. Under misreport j, the agent receives the lottery designed for report j, but

effort disutility is evaluated using the true (si, zi) (via Vi,a,b,r). Thus, for all i, j,

R∑
r=1

pr

 K∑
k=1

λi,k,r · Uk −
∑

(a,b)∈J

µi,a,b,r · Vi,a,b,r

 ≥
R∑

r=1

pr

 K∑
k=1

λj,k,r · Uk −
∑

(a,b)∈J

µj,a,b,r · Vi,a,b,r

 . (25)
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(v) Ex-ante occupational choice (no switching across shocks). The implementation

imposes that occupational status does not depend on the entrepreneurial shock realization. Let

JW := {(a, b) ∈ J : ȳa > 0}, J 0 := {(a, b) ∈ J : ȳa = 0, d̄b = 0}.

Then for each reported type i and each r ≥ 2,∑
(a,b)∈JW

µi,a,b,r =
∑

(a,b)∈JW

µi,a,b,1, (26)

∑
(a,b)∈J 0

µi,a,b,r =
∑

(a,b)∈J 0

µi,a,b,1. (27)

Since J excludes (ȳa > 0, d̄b > 0), these equalities imply that the remaining probability mass on entrepreneur

bundles (ȳa = 0, d̄b > 0) is also constant across r.

4 A Tractable Special Case

Before turning to the quantitative analysis in Section 5, we analyze a tractable special case of

the model in Section 2 with common labor skill and two entrepreneurial types. We compare a

“first-best” benchmark, in which there is no private information and thus taxes can be contingent

on entrepreneurs’ characteristics, with a “second-best” setting, in which entrepreneurial talent is

privately known and thus taxes can depend only on observed dividends.

The analysis delivers three main insights. First, with private information the planner must make

the entrepreneurship option sufficiently attractive to deter high-talent agents from becoming workers.

Specifically, when the high-type incentive constraint binds, entrepreneurs must be given positive

information rents: they consume more than workers and, relative to the full-information benchmark,

exert less entrepreneurial effort. In our general-equilibrium setting, this reduces productivity, output,

and wages and requires higher labor supply from workers. The planner therefore faces the following

trade-off: relaxing the incentive constraint requires shifting resources toward entrepreneurs, but

doing so weakens entrepreneurial effort incentives and tends to depress aggregates. Under private

information, entrepreneurs are strictly better off both relative to workers and relative to the first-best.

Second, as the production technology becomes more labor-intensive, private information generates

smaller distortions in wages, output, and welfare. When the share of high-talent entrepreneurs

decreases, the incentive problem becomes more severe, so private information has a larger impact

on aggregates and welfare.

Finally, the gap in entrepreneurial talent affects the economy primarily through a scale channel,

not through the severity of the incentive problem. The tightness of the incentive constraint—that

is, the shadow cost of separation—depends on technology and population composition, rather

than on the level (or gap) of entrepreneurial productivity itself. A larger entrepreneurial talent

advantage raises equilibrium wages, dividends, and consumption for both occupations while leaving

equilibrium effort choices unchanged. As a result, the welfare gains from greater entrepreneurial

talent accrue uniformly, benefiting both workers and entrepreneurs at the same rate in both the

13



first-best benchmark and under private information.

4.1 Environment

The setting is as in Section 2, except for the following specializations. Entrepreneurial risk is

shut down (ε ≡ 1) and participation costs are zero (κ1 = κ2 = 0). A unit mass of agents has

common labor productivity s = 1 and privately known entrepreneurial productivity z ∈ {zL, zH}
with zH > zL and population shares (ωL, ωH), with ωL + ωH = 1. Agents choose ex ante between

working (choosing labor effort ℓ ≥ 0) and operating a firm (choosing entrepreneurial effort e ≥ 0

and labor demand n ≥ 0). Preferences are u(c, ℓ, e) = log c− 1
2ℓ

2− 1
2e

2. A competitive labor market

clears at wage w > 0. If working, observable income is y = wℓ and d = 0; if operating, output is

q = zeαn1−α and observable dividends are d = q − wn, with y = 0.

As in Section 2, the planner conditions allocations only on observables (y, d) and we restrict

attention to exclusive outcomes (y > 0 ⇒ d = 0 and d > 0 ⇒ y = 0). Given (w, z) and a target

dividend d ≥ 0, we adopt the least-effort implementation rule: among all (e, n) delivering d, the

entrepreneur chooses the feasible pair minimizing e. For d > 0 this yields

n∗(d;w) =
1− α
α

d

w
, q∗(d;w) =

d

α
, (28)

and implied effort

e∗(d; z, w) = Γ(α)w
1−α
α

d

z1/α
, Γ(α) :=

1

α(1− α)(1−α)/α
. (29)

4.2 Planner’s occupational menu and the separating allocation

Policy instrument. The planner offers an occupational menu with two options: a worker contract

W = (cW , yW ) and an entrepreneur contract E = (cE , dE). Given wage w, a worker who selects W
supplies ℓW = yW /w and attains indirect utility

uW = log cW − 1
2

(
yW

w

)2

. (30)

A type-z entrepreneur who selects E chooses the inputs needed to deliver the targeted dividend dE

and attains

uE(z) = log cE − 1
2

(
e∗(dE ; z, w)

)2
. (31)

Sorting. In this environment, any competitive equilibrium with production features occupational

sorting by entrepreneurial productivity : low-z agents choose to become workers and high-z agents

operate firms. The reason is that, for any given dividend target d > 0, the optimal entrepreneurial

e∗(d; z, w) is strictly decreasing in z; hence higher-z agents can implement any profitable scale at

a lower disutility level than lower-z agents. Because workers have no comparative advantage in

operating firms and entrepreneurial output is increasing in z, efficiency dictates that entrepreneurial
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activity is allocated to the high type, while the low type supplies labor.8 Finally, labor-market

clearing requires that both occupations be present: whenever dividends are positive (dE > 0),

firm operation entails a positive measure of workers supplying labor and a positive measure of

entrepreneurs demanding labor.

Incentive constraints. Any incentive compatible outcome must satisfy:

(ICH) : log cE − 1
2

(
e∗(dE ; zH , w)

)2 ≥ log cW − 1
2

(
yW

w

)2

, (32)

(ICL) : log cW − 1
2

(
yW

w

)2

≥ log cE − 1
2

(
e∗(dE ; zL, w)

)2
. (33)

Constraint (ICH) requires that any high-talent agent prefers the entrepreneur option to the worker

option. By becoming a worker, she would receive consumption cW and would have to supply labor

effort ℓ = yW /w. Constraint (ICL) requires any low-talent agent prefers to become a worker rather

than an entrepreneur. If he selected the entrepreneur option, he would receive consumption cE and,

given his type zL, would need to exert the higher effort level e∗(dE ; zL, w) to generate the same

observable dividend dE .

Market clearing conditions. With low types supplying labor and high types demanding labor,

labor-market clearing equation can be written as

ωL ·
yW

w
= ωH ·

n∗(dE ;w)︷ ︸︸ ︷
1− α
α
· d

E

w
. (34)

or equivalently

yW = s · dE , where s :=
ωH
ωL
· 1− α

α
. (35)

and the aggregate resource feasibility can be written as

ωL · cW + ωH · cE = ωH ·

q∗(dE ;w)︷ ︸︸ ︷
dE/α . (36)

The aggregate amount of labor and the total consumption are thus jointly determined by the

dividend target dE , while the wage w is determined by equilibrium conditions (and remains explicit

in the expressions below).

8Formally, among allocations satisfying feasibility and the occupational observability restriction, any allocation
with zL operating firms and zH working can be improved by swapping occupations, holding fixed the observable
outcomes (y, d): the high type can replicate the same dividend with strictly lower effort cost, while the worker contract
depends only on y.
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Planner problem. The planner chooses (cW , yW , cE , dE , w) to maximize utilitarian welfare

subject to incentive compatibility and feasibility:

max
cW>0, yW≥0, cE>0, dE≥0, w>0

ωL ·
[
log cW − 1

2

(
yW

w

)2]
+ ωH ·

[
log cE − 1

2

(
e∗(dE ; zH , w)

)2]
(37)

s.t. (ICH) (32), (ICL) (33),

ωL ·
yW

w
= ωH · n∗(dE ;w), (38)

ωL · cW + ωH · cE = ωH ·
dE

α
. (39)

Let λ ≥ 0 denote the multiplier on (ICH) and µ ≥ 0 the multiplier on (ICL). In the closed-form

characterization below we focus on the empirically relevant setting in which

λ > 0, µ = 0,

i.e., (ICH) binds and (ICL) is slack.

4.3 Closed form when the high-type incentive constraint binds

We now focus on the case where (ICH) binds and (ICL) is slack. In words, the planner must

deter the high-z agent from wanting to select the worker contract, while the low type finds the

entrepreneurship option too costly because doing so would require a substantially higher effort in

order to generate the same observable dividend. In this case, the analysis delivers a sharp closed-form

characterization of the optimal allocation, and a transparent mapping from the information friction,

represented by the magnitude of the multiplier λ, into the differences in consumption and tax

burdens the two agent types. Equations (28) and (29) can be rewritten as

n∗(d;w) = β · d
w
, eH(d,w) := e∗(d; zH , w) = Γ(α) · wβ · d

z
1/α
H

,

where

β :=
1− α
α

, s :=
ωH
ωL

β, Γ(α) :=
1

α(1− α)(1−α)/α

and labor-market clearing implies yW = s · dE . The solution to the planner’s problem can now be

characterized in detail.

Closed-form representation (endogenous wage; (ICH) binds, (ICL) slack)

If the solution of (40) below satisfies λ > 0, then (ICH) binds, hence the high type is

indifferent between the entrepreneur and worker options. The other incentive constraint

(ICL) is automatically satisfied with slack.

If instead (40) yields λ ≤ 0, (ICH) is slack. By complementary slackness, the relevant
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multiplier is λ = 0, and the allocation is obtained by evaluating (41)–(43) at λ = 0.

Step 1: scalar equation for λ. Imposing (ICH) as equality implies the following equation

in λ

log

(
ωL · (ωH + λ)

ωH · (ωL − λ)

)
=

1

2
·
[

α

ωH + λ
− 1− α
ωL − λ

]
. (40)

Step 2: wage w(λ). The wage is pinned down by the planner’s FOC with respect to w

w(λ) = zH ·

(ωL − λ) ·
(
ωH
ωL

)2
· β

(ωH + λ) · Γ(α)2


α/2

. (41)

Step 3: allocations, given w(λ). Dividends and labor income are given by

dE(λ) =
w(λ)

s
·
√

1− α
ωL − λ

, yW (λ) = s · dE(λ). (42)

and the consumption levels are

cE(λ) = (ωH + λ) · d
E(λ)

α
, cW (λ) =

ωL − λ
ωL

· ωH ·
dE(λ)

α
. (43)

Step 4: Effort and Labor, given w(λ). The equilibrium labor and entrepreneurial effort

simplify to:

ℓW (λ) =
yW (λ)

w(λ)
=

√
1− α
ωL − λ

, eH(λ) =

√
α

ωH + λ
. (44)

4.4 Information rents and the distributional tilt toward entrepreneurs

If (ICH) is binding and (ICL) is slack, the closed-form solution implies the consumption and effort

wedges

G(λ) := cE(λ)− cW (λ) =
dE(λ)

α
· λ ·K, N(λ) := eH(λ)− ℓW (λ) =

√
α

ωH + λ
−
√

1− α
ωL − λ

, (45)

where K := 1 + ωH/ωL > 0.

Distribution and welfare implications. Equation (45) summarizes the redistribution induced

by private information. When (ICH) binds, we have λ > 0 and dE(λ) > 0 (by (42)), hence G(λ) > 0:

entrepreneurs consume more than workers, so the separating allocation necessarily tilts resources

toward entrepreneurship. This redistribution is especially stark in the two-type economy: the
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government budget constraint implies that net taxes must balance, so the information rent is

financed one-for-one by workers. In particular, workers pay positive net taxes while entrepreneurs

receive an equal net transfer (a subsidy).9

To assess the welfare implications, it is useful to compare effort across occupations. There are two

cases. If α ≤ ωH , then effort gap N(λ) < 0 for all λ > 0. Thus entrepreneurs exert less effort than

workers while consuming more, so they are strictly better off in utility terms. Instead, if α > ωH ,

which is arguably the more relevant case (e.g., the high-talent share is small, say ωH ≈ 5%–10%).

Then, we have

N(λ)


> 0, iff 0 ≤ λ < α− ωH ,

= 0, iff λ = α− ωH ,

< 0, iff λ > α− ωH .

(46)

For moderate wedges (λ < α− ωH), entrepreneurs still exert more effort than workers, but private

information shifts the allocation in their favor: they receive higher consumption and face weaker

effort requirements than under the full-information benchmark. As λ increases, the allocation

becomes progressively more tilted: entrepreneurial effort falls more relative to worker effort, while

the consumption advantage persists. In all cases, entrepreneurs are better off in utility terms relative

to the first best.

Information rents and general-equilibrium feedback. A useful way to unpack (45) is to

differentiate the rent wedge G(·) with respect to the incentive distortion λ:

dG

dλ
=
K

α

(
dE(λ)︸ ︷︷ ︸

direct effect:
higher rent weight

+ λ · d
dλ
dE(λ)︸ ︷︷ ︸

general-equilibrium effect:
dividends adjust via w(λ)

)
. (47)

The first term represents the direct screening force: holding aggregate dividends fixed, a higher λ

increases the entrepreneurs’ consumption to relax (ICH), thus widening the consumption gap. The

second term reflects general-equilibrium feedbacks, due to the endogeneity of both dividends (hence

GDP) and wages. Using dE(λ) = w(λ)
s · ℓ

W (λ), we obtain the decomposition

d

dλ
dE(λ) =

1

s

(
dw(λ)

dλ
· ℓW (λ)︸ ︷︷ ︸

wage channel

+ w(λ) · dℓ
W (λ)

dλ︸ ︷︷ ︸
labor-supply channel

)
. (48)

The equations (41) and (44) imply dw(λ)
dλ < 0 and dℓW (λ)

dλ > 0. The wage channel pushes dividends

down (a higher λ is associated with lower entrepreneurial effort and, through the wage formula, a

lower equilibrium wage), while the labor-supply channel pushes dividends — and therefore GDP,

ωHα
−1dE(λ) — up. Overall, G(λ) rises with λ when the direct rent effect and the labor-supply

9With no private information, the self-selection motive is absent; in the present representation this corresponds to
λ = 0, which collapses the rent wedge to cE(0) = cW (0).
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channel dominate the wage decline; if instead w(λ) falls sufficiently steeply as λ increases, then

dE(λ) and GDP can fall enough so that the consumption gap need not be monotone in λ, even

though it remains tilted toward entrepreneurs whenever λ > 0.

Figure 1: Comparative statics of the Lagrange multiplier λ
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Notes: The figure plots the numerical solution for λ as a function of the high-type share ωH

and the technology parameter α, obtained by solving equation (40) for λ for each parameter
pair.

When are rents largest? Figure 1 shows that λ∗(ωH , α) increases with α, and is largest at an

interior and relatively small value of ωH .
10 Three remarks are in order.

First, holding the population share ωH fixed, a higher α shifts the production technology

toward being more effort-intensive and less labor-intensive, and induces the planner to increase the

attractiveness of the entrepreneurship option by increasing their equilibrium payoff relative to the

workers. Second, holding technology (α) fixed, a smaller population share ωH makes it harder for

the planner to induce the high type to choose entrepreneurship and thus generate output. As a

result, the shadow value of (ICH) increases, which in turn amplifies information rents.

Finally, zH does not affect the shadow value of the incentive constraint: the multiplier λ is

pinned down only by α and ωH . By contrast, higher entrepreneurial productivity raises equilibrium

wages, dividends, and thus consumption levels for both entrepreneurs and workers. The implemented

worker labor supply and high-type entrepreneurial effort depend on (ωH , α, λ) only, not on zH . As a

result, the welfare gains from higher zH operate entirely through a scale effect on consumption. In

particular, welfare for both entrepreneurs and workers increases at rate 1/zH in both the first-best

benchmark and under private information (see Appendix A.2 for a formal proof). This result

suggests that policies aimed at stimulating entrepreneurial talent would be uniformly beneficial for

all agents in the economy.

10In Appendix A we show that ∂λ∗/∂α > 0.
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5 Calibration and Quantitative Results

This section describes how we parameterize the model and presents the main quantitative findings.

We calibrate five key parameters to match five empirical moments from U.S. data on labor force

participation, entrepreneurship, firm size, and business income dispersion. The quantitative analysis

delivers three main results: (i) occupational choice exhibits sharp sorting across the two-dimensional

type space, with general equilibrium effects playing a central role; (ii) the optimal allocation features

distinct tax treatment across occupation-specific margins; and (iii) entrepreneurial risk shapes the

mechanism by providing additional screening power to the planner.

5.1 Calibration

The model is static and interpreted as a yearly cross-section. All monetary variables are measured

in wage units: we normalize the competitive wage per efficiency unit to w ≡ 1. Under this

normalization, labor income, entrepreneurial dividends, consumption, and fixed participation costs

are all expressed relative to the wage.

Preferences. We assume CRRA utility over consumption and a standard power disutility of

effort:

U(c) =


c1−γ − 1

1− γ
, γ ̸= 1,

log c, γ = 1,

V (ℓ) =
ℓ1+ψ

1 + ψ
.

We set γ = 1 (log utility) and ψ = 1 (unit Frisch elasticity), both standard values in the quantitative

public finance literature.

Technology and productivity risk. The firm production function is q = z · ε · eαn1−α with

α ∈ (0, 1). The parameter α governs firm scale: lower values imply higher labor demand per unit of

entrepreneurial effort, hence larger firms on average. We calibrate α to match the average number

of employees per operating firm in the U.S.

Idiosyncratic entrepreneurial risk is multiplicative, i.i.d. across agents, and independent of (s, z).

We assume a lognormal shock

ε ∼ logN
(
−1

2σ
2
ε , σ

2
ε

)
, E[ε] = 1.

We calibrate σε to match the coefficient of variation of business income among entrepreneurs,

following DeBacker et al. (2021).

Type distribution. We discretize (s, z) on an N1 × N2 = 50 × 50 grid. The two dimensions

follow independent lognormal distributions:

log s ∼ N (ms, σ
2
s), log z ∼ N (mz, σ

2
z), log s ⊥ log z.
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Table 1: Calibrated parameters

Parameter Symbol Value Target moment Source

Preferences (set externally)
Risk aversion γ 1.00 Log utility Standard
Frisch elasticity 1/ψ 1.00 Unit elasticity Standard

Calibrated parameters
Firm curvature α 0.201 Avg. employees/firm U.S. Census
Worker fixed cost κ1 0.378 Labor participation BLS
Entrepreneur fixed cost κ2 0.0871 Entrepreneurship rate BLS
Shock volatility σε 0.267 CV of business income SCF/PSID
Entrep. ability dispersion σz 0.280 p90/p50 business income DeBacker et al. (2021)

Type distribution (set externally)
Labor skill dispersion σs 0.318 Wage skill premium Heathcote et al. (2014)
Ability correlation ρ 0.00 Independence Baseline

We normalize ms = mz = −1
2σ

2
j so that the means equal one in levels. The dispersion σs is set

to match the wage skill premium from Heathcote et al. (2014). The dispersion σz is calibrated to

match the 90th-to-50th percentile ratio of business income.

Extensive margins. We discipline participation through fixed costs (κ1, κ2). The fixed cost κ1

governs the labor force participation rate, and κ2 governs the entrepreneurship rate.

Calibration strategy. We jointly calibrate five parameters—(κ1, κ2, α, σε, σz)—to match five

moments. Table 1 reports the calibrated parameter values, and Table 2 compares model-implied

moments to their data counterparts.

The calibration matches the targeted moments reasonably well. The model slightly overpredicts

labor force participation (66.4% vs. 62%) and underpredicts entrepreneurship (8.7% vs. 10%), while

matching the business income dispersion almost exactly. The coefficient of variation of entrepreneur

income is somewhat higher in the model (1.50 vs. 1.20), reflecting the substantial idiosyncratic

risk faced by entrepreneurs. The low value of α ≈ 0.201 implies that entrepreneurial production is

labor-intensive, generating substantial labor demand and hence sizable general equilibrium effects

through wage determination. The fixed cost of working (κ1 ≈ 0.378) is larger than the fixed cost

of entrepreneurship (κ2 = 0.0871), consistent with the interpretation that entrepreneurship is a

selective, high-return activity.

Numerical method. We discretize the two-dimensional type space on a 50 × 50 grid, giving

N = 2,500 types. Each type is assigned a lottery over K = 70 consumption levels and |A| = 49

admissible income pairs across R shock states, yielding approximately 17 million decision variables.

Incentive compatibility requires that no type prefer the allocation of any other, generating N2 ≈ 6.25

million pairwise IC constraints.
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Table 2: Targeted moments: model vs. data

Moment Model formula Model Data

Labor participation

∫
1{y1 > 0 ∨ y2 > 0} dF (s, z) 0.628 0.620

Entrepreneurship rate

∫
1{y2 > 0} dF (s, z) 0.082 0.100

Avg. employees/firm

∫
n(s, z) · 1{y2 > 0} dF∫

1{y2 > 0} dF
8.8 10.0

CV of business income
Std(y2 | y2 > 0)

E[y2 | y2 > 0]
1.48 1.20

log(p90/p50) biz income log

(
yp902

yp502

)∣∣∣
y2>0

2.5 2.64

Notes: n(s, z) = 1−α
α

· y2+κ2
w

is firm labor demand. Data sources: labor participation from Bureau of Labor
Statistics (2024b); entrepreneurship rate from Bureau of Labor Statistics (2024a); average employees from U.S.
Census Bureau (2021); business income dispersion from DeBacker et al. (2021).

As described in Subsection 4.3, the planner’s problem admits a linear optimization formulation

over marginal lotteries. The LP reformulation transforms the original non-convex mechanism design

problem—which is generally ill-behaved and difficult to solve with standard nonlinear methods—into

a well-posed linear problem with a unique global optimum. However, even in its LP form the sheer

number of IC constraints makes the full problem computationally infeasible at this grid resolution.

To overcome this bottleneck, we develop a constraint generation algorithm solved with Gurobi’s

barrier method. The key observation is that, at the optimum, only a small fraction of the N2 IC

constraints are binding. The algorithm starts from a relaxed LP containing only local IC constraints—

between each type and its four adjacent neighbors on the grid—and iteratively identifies globally

violated constraints by evaluating the full N2 deviation-payoff matrix at each candidate solution.

At each iteration, the algorithm prioritizes the most strongly violated pairs, adds them to the active

set, and re-solves the LP. At convergence, the method recovers the exact global optimum of the full

problem.

This makes it possible to use grid resolutions an order of magnitude finer than previously feasible,

delivering smooth policy functions and reliable comparative statics. Appendix B.2 provides the full

algorithmic details.

5.2 Quantitative Results

We now describe the structure of the optimal allocation in the calibrated economy and how

it changes with (i) entrepreneurial risk, (ii) the scarcity of high-z entrepreneurial types, and

(iii) affiliation between labor skill s and entrepreneurial ability z. Throughout, all variables are

expressed in wage units (recall the normalization w ≡ 1). Taxes are reported as net tax liabilities

T (s, z) = y(s, z)− c(s, z), and the average tax rate is ATR(s, z) = T (s, z)/
(
y(s, z) + d(s, z)

)
(with

ATR = 0 at the inactive point). Unless otherwise stated, we report ex ante (pre-shock) allocations
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that are constant across entrepreneurial shock realizations; when we display state-by-state taxes, we

do so holding fixed the same occupational choice.

Figure 2: Optimal allocations and net tax liabilities in the stochastic calibrated economy
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Notes: The figure plots the optimal allocation over the two-dimensional type space (s, z) in the calibrated
economy with entrepreneurial risk and baseline affiliation (ρ = 0). Entrepreneurial risk has two shock realizations;
the plotted objects are ex ante allocations (and, when applicable, expectations across shock realizations). Panels
display: (a) consumption c, (b) labor income y, (c) dividends d, (d) indirect utility U(c)−V (ℓ)−E[V (e)], (e) net
tax liability T = y − c, and (f) the average tax rate ATR = T/(y + d) (defined as 0 at (y, d) = (0, 0)). Exclusive
occupations imply y > 0 ⇒ d = 0 and d > 0 ⇒ y = 0.

Baseline stochastic economy: sorting and a tax break at the entry margin. Figure 2

summarizes the main patterns in the calibrated stochastic economy. First, the allocation exhibits

sharp occupational sorting. Low entrepreneurial ability types are assigned to work (positive y, zero

d), while sufficiently high z types operate firms (positive d, zero y). This sorting boundary is an

extensive margin of entrepreneurship that depends on labor skill s: holding z fixed, higher-s agents

have a better outside option in paid work and therefore require larger entrepreneurial rents to be

induced into firm operation.

Second, consumption is increasing in both s and z, while the occupational choice generates

a pronounced kink along the entry boundary. The key distributional object is the net tax map

T = y− c in panel (e). Fix s and increase z. For sufficiently high s (agents with strong labor-market
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outside options), taxes are non-monotone in z around the entrepreneurship entry margin: as z rises

into the entrepreneur region, the planner reduces net tax liabilities sharply (often into negative

territory), creating a localized entrepreneurial tax break. This pattern is the quantitative counterpart

of the information-rent logic in Section 4: to prevent high-s types with moderate z from mimicking

low-z types and selecting the worker contract, the planner must make the entrepreneurial contract

locally attractive at the point where occupational choice is most elastic.

Finally, these subsidies are amplified by general equilibrium. Because entrepreneurs hire labor,

a contraction in entry reduces labor demand; market clearing therefore requires a sufficiently large

mass of active entrepreneurs. In equilibrium, the planner uses the tax system both to screen and to

sustain entry so that labor demand is high enough to absorb workers. The resulting policy features

a sharp redistribution toward marginal entrepreneurs—precisely those types who are closest to

switching into paid work.

5.2.1 The role of entrepreneurial risk

Entrepreneurial risk changes the optimal policy through two channels: insurance (consumption

smoothing across realizations) and screening (state-contingent distortions that relax ex ante incentive

constraints). Figure 3 reports deterministic counterpart of Figure 2.

Two facts stand out. First, risk leads the planner to smooth consumption in the entrepreneur

region, raising consumption for types that would otherwise face low realized dividends and lowering

it for those with high realizations. In the deterministic economy, by contrast, there is no state to

insure and the policy relies more heavily on deterministic wedges, which shows up as larger and

more systematic tax breaks for entrepreneurs along the entry boundary.

Second, the stochastic economy allows the planner to make taxes more state-contingent. In

high-dividend realizations, more likely generated by the high-productivity shock, entrepreneurs are

less tempted to mimic low-z worker types because the entrepreneurial contract delivers sufficiently

high resources even without large information rents. The planner can therefore impose higher

taxes in the high realization with limited incentive cost. In low-dividend realizations, instead,

the temptation to mimic is stronger; the optimal policy responds by expanding subsidies as z

increases within the entrepreneur region, generating the blue (negative-tax) gradient visible in

the state-by-state tax maps of Figure 4 (top row). In the deterministic economy taxes cannot be

conditioned on realizations and thus must “front-load” rents in the single state, producing a starker

and more monotone pattern of entrepreneurial tax breaks.

5.2.2 Scarcity of entrepreneurial types

We next reduce the dispersion of entrepreneurial ability, compressing the upper tail of z (“worsened

entrepreneurial types”). Figure 4 shows how the optimal tax map changes in each realization relative

to the baseline.

When entrepreneurial types are less dispersed, screening becomes harder and the mass of very

productive entrepreneurs falls. Quantitatively, the planner responds by extending tax breaks deeper
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Figure 3: Entrepreneurial risk versus determinism: changes in consumption, dividends, and welfare
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Notes: The figure plots the optimal allocation over the two-dimensional type space (s, z) in the calibrated
deterministic economy (no entrepreneurial risk) with baseline affiliation (ρ = 0). The plotted objects are
deterministic allocations. Panels display: (a) consumption c, (b) labor income y, (c) dividends d, (d) indirect
utility U(c)−V (ℓ)−V (e), (e) net tax liability T = y− c, and (f) the average tax rate ATR = T/(y+ d) (defined
as 0 at (y, d) = (0, 0)). Exclusive occupations imply y > 0 ⇒ d = 0 and d > 0 ⇒ y = 0.

into the entrepreneur region, and crucially, by doing so even in the high realization. In the baseline

economy, high-realization taxes can be higher because incentive constraints are relatively slack in

that state; once high-z types become scarce, however, sustaining entry and labor demand requires

raising the attractiveness of entrepreneurship across states. This is consistent with the simple

two-type logic in Section 4: when it is harder to secure sufficient entrepreneurial participation, the

shadow cost of the relevant incentive constraint rises and the optimal policy tilts more resources

toward entrepreneurs.

5.2.3 Affiliation between s and z: superstars versus specialized talent

Finally, we vary the correlation between labor skill and entrepreneurial ability. Positive affiliation

(“superstars”) increases the prevalence of types that are simultaneously high s and high z, while

negative affiliation (“specialized”) generates comparative advantage, with types more likely to be

high in one dimension and low in the other. Figure 5 contrasts the resulting tax maps by realization.
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Figure 4: Scarcity of high-z types: optimal net taxes by realization
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Notes: The figure reports net tax liabilities T = y− c across the type space in the stochastic economy, separately
by shock realization. The top row corresponds to the baseline entrepreneurial-type distribution; the bottom row
corresponds to an economy with lower dispersion in entrepreneurial ability (a “shrunk” z distribution). The left
column is the low dividend realization; the right column is the high dividend realization. Negative values (blue)
indicate net subsidies. All variables are in wage units.

The correlation structure reshapes both the location and the intensity of entrepreneurial rents.

In the superstar economy, the policy concentrates both high taxes and large subsidies in the top-right

corner (high s, high z), reflecting the fact that the most productive entrepreneurs also have the

strongest worker outside options. The planner therefore uses sharply state-contingent instruments:

in the high realization, taxes are concentrated where realizations are high and incentive constraints

are weakest, while subsidies remain targeted to types whose entry would otherwise be most fragile

(including low-s, high-z entrepreneurs who generate labor demand but have limited insurance

capacity).

In the specialized economy, instead, many entrepreneurs have relatively low labor skill (low s,

high z). These types have weaker worker outside options, so entry is easier to sustain; the planner

correspondingly shifts the tax and transfer burden toward the entrepreneur region with low s and

high z, in the high and low realization respectively, while relying less on large subsidies for marginal
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Figure 5: Affiliation in the joint type distribution: net taxes by realization
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Notes: The figure reports net tax liabilities T = y − c across the type space in the stochastic economy by shock
realization, under alternative correlations between log s and log z. The top row is the baseline distribution
(ρ = 0). The middle row is the superstar economy (positive affiliation, ρ > 0). The bottom row is the specialized
economy (negative affiliation, ρ < 0). The left column is the low realization; the right column is the high
realization. Negative values (blue) indicate net subsidies. All variables are in wage units.

entrants. Overall, affiliation changes the geometry of the binding incentive constraints and therefore

the distribution of entrepreneurial tax breaks across the type space.

Welfare and inequality. Across all scenarios, the agents receiving the largest entrepreneurial

tax breaks also obtain higher consumption and higher indirect utility. The quantitative mechanism

therefore highlights a fundamental trade-off: relaxing incentive constraints and sustaining entry

requires granting rents to entrepreneurs, which raises ex post inequality even as it supports production,

labor demand, and insurance. The maps in Figures 2–5 show that this trade-off is most pronounced

at the extensive margin of entrepreneurship and is amplified when high-z types are scarce or when

high s and high z are positively affiliated.

6 Conclusion

Entrepreneurship is both a source of volatile, unequal incomes and a driver of labor demand and

aggregate performance. In an economy where individuals privately know both worker skill and

entrepreneurial talent, and where policy can condition only on realized earnings and profits, optimal
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taxation must jointly provide insurance and preserve occupational incentives. Our analysis shows

that this interaction generically produces localized subsidies to entrepreneurship at the extensive

margin: information rents are not an anomaly but a second-best instrument for sustaining entry,

separation, and labor-market clearing. Quantitatively, the resulting tax-and-transfer system features

sharp sorting, state-contingent insurance against entrepreneurial risk, and entry incentives that

are strongest where outside options are highest. More broadly, the results highlight why efficient

redistribution in entrepreneurial economies cannot be designed in partial equilibrium—because the

occupational allocation of talent feeds back into wages, output, and the incidence of taxation across

the entire population.
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A Mathematical Appendix

A.1 Comparative statics of the endogenous-wage multiplier λ

Consider the scalar equation

F (λ;ωH , α) = 0, λ ∈ (−ωH , ωL), ωL := 1− ωH , (49)

where

F (λ;ωH , α) := log

(
ωL · (ωH + λ)

ωH · (ωL − λ)

)
− 1

2

[
α

ωH + λ
− 1− α
ωL − λ

]
. (50)

Throughout we maintain ωH ∈ (0, 1), α ∈ (0, 1), and λ ∈ (−ωH , ωL) so all denominators are positive.

A.1.1 Step 1: derivatives of F

Write A := ωH + λ and B := ωL − λ. Then A > 0 and B > 0 on the admissible set. Differentiating

(50) with respect to λ yields

Fλ(λ;ωH , α) =
1

ωH + λ
+

1

ωL − λ
+

1

2

[
α

(ωH + λ)2
+

1− α
(ωL − λ)2

]
. (51)

Hence,

Fλ(λ;ωH , α) > 0 for all λ ∈ (−ωH , ωL). (52)

Differentiating (50) with respect to α gives

Fα(λ;ωH , α) = −
1

2

[
1

ωH + λ
+

1

ωL − λ

]
< 0. (53)

To differentiate with respect to ωH taking into account ωL = 1− ωH , it is convenient to first

compute the partials treating ωH and ωL as independent, and then apply the chain rule. Holding λ

fixed,

FωH =
1

ωH + λ
− 1

ωH
+

α

2(ωH + λ)2
, (54)

FωL =
1

ωL
− 1

ωL − λ
− 1− α

2(ωL − λ)2
. (55)
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Since ωL = 1− ωH , we have dωL/dωH = −1, so the total derivative of F with respect to ωH is

d

dωH
F (λ;ωH , α) = FωH − FωL =

[
1

ωH + λ
− 1

ωH
− 1

ωL
+

1

ωL − λ

]
︸ ︷︷ ︸

log term

+

[
α

2(ωH + λ)2
+

1− α
2(ωL − λ)2

]
︸ ︷︷ ︸

RHS term

.

(56)

A.1.2 Step 2: first derivatives via the Implicit Function Theorem

Let λ∗ = λ∗(ωH , α) solve (49). By the implicit function theorem,

∂λ∗

∂x
= − Fx

Fλ

∣∣∣∣
(λ∗,ωH ,α)

for x ∈ {α, ωH}. (57)

Derivative with respect to α. Combining (52)–(53) with (57) gives

∂λ∗

∂α
= −Fα

Fλ
=

1
2

[
1

ωH+λ∗ + 1
ωL−λ∗

]
1

ωH+λ∗ + 1
ωL−λ∗ + 1

2

[
α

(ωH+λ∗)2 + 1−α
(ωL−λ∗)2

] > 0. (58)

Thus, the informational wedge indexed by λ∗ is increasing in α.

A.2 Welfare derivative with respect to zH (endogenous wage).

Consider equilibrium welfare

W (zH) = ωL ·

[
log cW − 1

2 ·
(
yW

w

)2
]
+ ωH ·

[
log cE − 1

2 ·
(
e∗(dE ; zH , w)

)2]
,

evaluated at the closed-form allocation in the regime where (ICH) binds and (ICL) is slack.

Step 1: λ∗ does not depend on zH . The scalar equation pinning down λ∗ is (40), which depends

only on (ωH , ωL, α). Hence, within this regime,

dλ∗

dzH
= 0.

Step 2: the disutility terms are zH-invariant at the optimum. Using the closed-form

simplifications, (
yW

w

)2

=
1− α
ωL − λ∗

,
(
e∗(dE ; zH , w)

)2
=

α

ωH + λ∗
,

so both disutility terms are constant with respect to zH (since λ∗ is constant).

Step 3: cW and cE scale linearly with zH . From the wage formula (41),

w(λ∗) = zH · Ξ(λ∗, ωH , ωL, α),
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for some positive factor Ξ(·) independent of zH . Then (42) implies

dE(λ∗) =
w(λ∗)

s
·
√

1− α
ωL − λ∗

= zH · κ(λ∗, ωH , ωL, α),

so dE is linear in zH . Finally, (43) gives

cE(λ∗) = (ωH + λ∗) · d
E(λ∗)

α
= zH ·AE , cW (λ∗) =

ωL − λ∗

ωL
· ωH ·

dE(λ∗)

α
= zH ·AW ,

with constants AE , AW > 0 independent of zH .

Step 4: differentiate welfare. Because only the log terms depend on zH and cE , cW are linear in

zH ,
d

dzH
log cE(λ∗) =

1

zH
,

d

dzH
log cW (λ∗) =

1

zH
.

Therefore,

dW

dzH
= ωL ·

1

zH
+ ωH ·

1

zH
=

1

zH
. (59)

B Computational Appendix

B.1 Wage normalization: detailed derivation

This appendix derives the wage-normalized formulation used in the computational LP. The compet-

itive wage w > 0 is an endogenous scalar price (the shadow price on labor market clearing). Since

only relative prices matter, we can choose the wage as numeraire. Formally, we divide all nominal

(monetary) objects by w and rewrite the model in terms of wage-normalized variables.

B.1.1 Normalization map

Define wage-normalized (“real”) versions of all monetary variables:

c̃ :=
c

w
, ỹ :=

y

w
, d̃ :=

d

w
, κ̃m :=

κm
w

(m = 1, 2), z̃ :=
z

w
. (60)

We do not rescale real inputs and productivities measured in efficiency units: skill s, efforts (ℓ, e),

labor demand n, and the shock ε are unchanged.

B.1.2 Worker income under normalization

Recall the definition of observed labor income:

y = w · s · ℓ − κ1 · 1[ℓ > 0]. (61)

Divide (61) by w and use (60):

ỹ = s · ℓ − κ̃1 · 1[ℓ > 0]. (62)
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Because w > 0, the sign of y is preserved by normalization: y > 0 ⇐⇒ ỹ > 0.

Implied worker effort from a labor-income assignment. From the original mapping,

ℓ =
y + κ11[y > 0]

w · s
, (63)

substitute y = wỹ and κ1 = wκ̃1 to obtain

ℓ =
wỹ + wκ̃11[ỹ > 0]

w · s
=

ỹ + κ̃11[ỹ > 0]

s
. (64)

Equivalently,

ℓ(ỹ; s) :=


ỹ + κ̃1
s

, ỹ > 0,

0, ỹ = 0.

(65)

B.1.3 Entrepreneurial dividends under normalization

If the agent operates a firm (n > 0), output is

q = z · ε · eα · n1−α, α ∈ (0, 1), (66)

and observed dividends are

d = q − wn− κ2 · 1[n > 0] = z · ε · eα · n1−α − wn− κ2 · 1[n > 0]. (67)

Divide (67) by w and use (60):

d̃ =
z

w
· ε · eα · n1−α − n − κ2

w
· 1[n > 0]

= z̃ · ε · eα · n1−α − n − κ̃2 · 1[n > 0]. (68)

Thus, the “q/w” term is absorbed into z̃ = z/w, preserving the functional form of the dividend

equation.

B.1.4 Entrepreneurial input identity and implied effort

The original identity linking observables (d) to private inputs (e, n) is

z · ε · eαn1−α = d+ wn+ κ2, e ≥ 0, n ≥ 0. (69)

Divide (69) by w and substitute (60):

z̃ · ε · eαn1−α = d̃+ n+ κ̃2, e ≥ 0, n ≥ 0. (70)

33



Implied entrepreneurial effort as a function of labor demand. For any fixed n > 0, the

original mapping is

e(n; d, z, ε, w) =

(
d+ κ2 + wn

z · ε · n1−α

)1/α
. (71)

Using d = wd̃, κ2 = wκ̃2, z = wz̃ yields

e(n; d̃, z̃, ε) =

(
w(d̃+ κ̃2 + n)

wz̃ · ε · n1−α

)1/α

=

(
d̃+ κ̃2 + n

z̃ · ε · n1−α

)1/α

. (72)

Least-effort labor demand. Under the selection rule that the agent chooses (e, n) minimizing e

(equivalently V (e)), one obtains in the original formulation

n∗(d;w) :=
1− α
α
· d+ κ2

w
for d > 0. (73)

Substituting d = wd̃ and κ2 = wκ̃2 gives the normalized form

n∗(d̃) :=
1− α
α
·
(
d̃+ κ̃2

)
for d̃ > 0. (74)

Define n∗(0) = 0.

Implied least-effort entrepreneurial effort. Plugging (74) into (70) yields the implied least-

effort entrepreneurial effort:

e∗(d̃; z̃, ε) :=

(
d̃+ κ̃2 + n∗(d̃)

z̃ · ε ·
(
n∗(d̃)

)1−α
)1/α

, e∗(0; z̃, ε) := 0. (75)

B.1.5 Resource constraint under normalization

The aggregate resource constraint is∫
S×Z

Eε
[
c
(
y(s, z), d(s, z, ε)

)]
· f(s, z) ds dz ≤

∫
S×Z

Eε[y(s, z) + d(s, z, ε)] · f(s, z) ds dz. (76)

Divide both sides of (76) by w and use (60):∫
S×Z

Eε
[
c̃
(
ỹ(s, z), d̃(s, z, ε)

)]
· f(s, z) ds dz ≤

∫
S×Z

Eε
[
ỹ(s, z) + d̃(s, z, ε)

]
· f(s, z) ds dz. (77)

B.1.6 Labor market clearing under normalization

Labor market clearing in efficiency units is∫
S×Z

s · ℓ(s, z) · f(s, z) · ds dz =
∫
S×Z

Eε
[
n∗(d(s, z, ε);w)

]
· f(s, z) ds dz. (78)
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Using the normalized effort mappings (65) and (74), we can rewrite (78) equivalently as∫
S×Z

s · ℓ(ỹ(s, z); s) · f(s, z) ds dz =
∫
S×Z

Eε
[
n∗(d̃(s, z, ε))

]
· f(s, z) ds dz, (79)

which contains no explicit w.

B.1.7 Incentive constraints under normalization

The ex ante incentive constraints require that for all true types (s, z) and all reports (ŝ, ẑ),

Eε
[
U
(
c(y(s, z), d(s, z, ε))

)
− V

(
e(d(s, z, ε); z, ε, w)

)]
− V

(
ℓ(y(s, z); s, w)

)
≥

Eε
[
U
(
c(y(ŝ, ẑ), d(ŝ, ẑ, ε))

)
− V

(
e(d(ŝ, ẑ, ε); z, ε, w)

)]
− V

(
ℓ(y(ŝ, ẑ); s, w)

)
. (80)

Under the normalization (60), replace (c, y, d, κ1, κ2, z) by (c̃, ỹ, d̃, κ̃1, κ̃2, z̃) and use the normalized

implied-effort mappings (64) and (75). This yields an IC system identical in form but containing no

explicit w.

B.2 Constraint Generation Algorithm

B.2.1 Notation

N = N1 ×N2 Number of types on the 2D grid

θi = (θ1,i, θ2,i) Type i’s private information (worker skill, entrepreneur ability)

ωi Population weight of type i

Wi Social welfare weight of type i

K Number of consumption grid points, {ck}Kk=1

A Number of labor income grid points, {y1,a}Aa=1

B Number of entrepreneurial dividend grid points, {y2,b}Bb=1

R Number of shock states, {εr}Rr=1 with probabilities {pr}Rr=1

U(ck) CRRA consumption utility at grid point k

Di,a,b,r Total effort disutility for type i at income pair (a, b) in state r

λi,k,r Probability that type i receives consumption ck in state r

µi,a,b,r Probability that type i produces income (y1,a, y2,b) in state r

P Active set of incentive-compatibility (IC) pairs

The disutility coefficients are:

Di,a,b,r = V

(
y1,a + κ1 · 1{y1,a>0}

θ1,i

)
+ V

(
e∗i,b,r

)
,

where V (ℓ) = ℓ1+η

1+η is the power disutility of effort, and e∗i,b,r is the minimum effort required for type

i to generate dividend y2,b in shock state r.
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B.2.2 Relaxed Master Problem: LP(P)

Given an active set of IC pairs P ⊆ {1, . . . , N}2 \ {(i, i)}, solve:

max
λ,µ

N∑
i=1

ωiWi EU(i) (81)

s.t.

K∑
k=1

λi,k,r = 1, ∀ i = 1, . . . , N, r = 1, . . . , R

(82)∑
(a,b)∈A

µi,a,b,r = 1, ∀ i = 1, . . . , N, r = 1, . . . , R

(83)

EU(i) ≥ DevUtil(i, j), ∀ (i, j) ∈ P (84)

N∑
i=1

ωi

R∑
r=1

pr

K∑
k=1

λi,k,r ck ≤
N∑
i=1

ωi

R∑
r=1

pr
∑

(a,b)∈A

µi,a,b,r(y1,a + y2,b) (85)

λi,k,r ≥ 0, µi,a,b,r ≥ 0, ∀ i, k, a, b, r (86)

where the set of allowed income pairs is A = {(a, b) : not(y1,a > 0 and y2,b > 0)} (occupational
exclusivity), and the expected utilities are:

EU(i) =
R∑
r=1

pr

 K∑
k=1

λi,k,r U(ck) −
∑

(a,b)∈A

µi,a,b,rDi,a,b,r

 , (87)

DevUtil(i, j) =
R∑
r=1

pr

 K∑
k=1

λj,k,r U(ck) −
∑

(a,b)∈A

µj,a,b,rDi,a,b,r

 . (88)

Note: DevUtil(i, j) uses type j’s lottery (λj , µj) but type i’s disutility Di; it represents the payoff

type i would obtain by mimicking type j.

Optionally, a labor market clearing constraint is added (general equilibrium):

N∑
i=1

ωi

R∑
r=1

pr
∑

(a,b)∈A

µi,a,b,r L
s
i,a =

N∑
i=1

ωi

R∑
r=1

pr
∑

(a,b)∈A

µi,a,b,r L
d
i,b,r, (89)

where Lsi,a is labor supply and Ldi,b,r is equilibrium labor demand from type i’s firm at dividend y2,b

in state r.
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B.2.3 Local IC Pair Initialization

Types are indexed on an N1×N2 grid where i = (i2−1)N1+ i1 for i1 = 1, . . . , N1 and i2 = 1, . . . , N2.

The local neighbor pairs are:

Algorithm 1 BuildLocalICPairs(N,N1, N2)

Input: Grid dimensions N1, N2 with N = N1 ×N2

Output: Set of adjacent-neighbor IC pairs P0
1: P0 ← ∅
2: for i = 1, . . . , N do

3: if i mod N1 ̸= 0 then ▷ Neighbor to the right in θ1

4: P0 ← P0 ∪ {(i, i+ 1)}
5: end if

6: if i mod N1 ̸= 1 then ▷ Neighbor to the left in θ1

7: P0 ← P0 ∪ {(i, i− 1)}
8: end if

9: if i ≤ N −N1 then ▷ Neighbor above in θ2

10: P0 ← P0 ∪ {(i, i+N1)}
11: end if

12: if i > N1 then ▷ Neighbor below in θ2

13: P0 ← P0 ∪ {(i, i−N1)}
14: end if

15: end for

16: return P0
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B.2.4 IC Violation Computation

Algorithm 2 ComputeICViolations(λ∗, µ∗, U,D, p,N)

Input: Optimal marginals λ∗, µ∗ from the LP; utilities U(ck); disutilities Di,a,b,r; shock probabilities

pr

Output: Violation matrix V ∈ RN×N , maximum violation, list of violated pairs

1: for i = 1, . . . , N do ▷ Compute expected consumption utility

2: for r = 1, . . . , R do

3: ConsUtil(i, r)←
∑K

k=1 λ
∗
i,k,r U(ck)

4: end for

5: ECons(i)←
∑R

r=1 pr · ConsUtil(i, r)
6: end for

7: for i = 1, . . . , N do ▷ Compute truthful disutility

8: TruthDis(i)←
∑R

r=1 pr
∑

(a,b)∈A µ
∗
i,a,b,rDi,a,b,r

9: end for

10: for i = 1, . . . , N do ▷ Truthful expected utility

11: EU(i)← ECons(i)− TruthDis(i)

12: end for

13: for i = 1, . . . , N do ▷ Compute cross-disutility matrix

14: for j = 1, . . . , N do

15: DevDis(i, j)←
∑R

r=1 pr
∑

(a,b)∈A µ
∗
j,a,b,rDi,a,b,r

16: end for

17: end for

18: for i = 1, . . . , N do ▷ Compute violation matrix

19: for j = 1, . . . , N, j ̸= i do

20: V(i, j)←
[
ECons(j)−DevDis(i, j)

]
− EU(i) ▷ = DevUtil(i, j)− EU(i)

21: end for

22: end for

23: vmax ← maxi ̸=j V(i, j)

24: ViolPairs← {(i, j) : V(i, j) > τ, i ̸= j}
25: return V, vmax, ViolPairs
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Algorithm 3 Constraint Generation for the Mirrlees Optimal Tax LP

Input: Type grid {θi}Ni=1 on N1 × N2; weights ωi, Wi; grids {ck}, {y1,a}, {y2,b}; utility U(·);
disutility Di,a,b,r; shocks (εr, pr)

R
r=1; tolerance τ > 0; max iterations T ; max pairs per iteration

M
Output: Optimal allocations (λ∗, µ∗); social welfare SW∗; active IC pair set P∗

Phase 1: Initialization
1: P ← BuildLocalICPairs(N,N1, N2) ▷ |P| ≈ 4N local pairs

Phase 2: Constraint Generation Loop
2: for t = 1, 2, . . . , T do

3: Step 2a: Solve Relaxed Master Problem
4: (λ∗, µ∗, SW)← Solve LP(P) via AMPL/CPLEX ▷ Eqs. (81)–(86)
5: if LP infeasible or solver failure then
6: return failure
7: end if

8: Step 2b: Separation Oracle — Check All N2 IC Constraints
9: (V, vmax,ViolPairs)← ComputeICViolations(λ∗, µ∗, U,D, p,N)

10: Step 2c: Filter Active-Set Artifacts

11: Vout(i, j)←

{
V(i, j) if (i, j) /∈ P and i ̸= j

−∞ otherwise

12: vmax
out ← maxi,j Vout(i, j)

13: NewViol← {(i, j) ∈ ViolPairs : (i, j) /∈ P}

14: Step 2d: Sort by Violation Magnitude
15: Sort NewViol in decreasing order of V(i, j)

16: Step 2e: Convergence Check
17: if vmax

out ≤ τ then
18: return (λ∗, µ∗,SW,P) ▷ Converged: all IC constraints satisfied
19: end if

20: Step 2f: Augment Active Set
21: nadd ← min(|NewViol|,M)
22: P ← P ∪ NewViol[1 : nadd] ▷ Add most-violated pairs
23: Remove duplicates from P
24: end for

25: return (λ∗, µ∗, SW,P) with warning: did not converge in T iterations
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B.2.5 Main Algorithm: Constraint Generation

B.2.6 Remarks

1. Initialization. The algorithm starts with only |P0| ≈ 4N local IC constraints (adjacent

neighbors on the 2D type grid), rather than the full N2−N pairwise constraints. For N = 2,500

(a 50× 50 grid), this reduces the initial constraint count from ∼6.25× 106 to ∼10,000.

2. Separation oracle. At each iteration, the full N ×N violation matrix is computed in MAT-

LAB via vectorized matrix operations (the cross-disutility matrix DevDis(i, j) =
∑

r prDrM
⊤
r

is computed as a matrix product), making the separation step efficient despite its O(N2)

scaling.

3. Convergence criterion. Only violations outside the current active set P determine conver-

gence. Violations on active-set constraints (which should be zero in exact arithmetic) may be

nonzero due to LP solver numerical tolerances and are treated as artifacts.

4. Capping. At most M new pairs are added per iteration (sorted by violation magnitude in

descending order) to prevent the LP size from growing too rapidly.

5. Marginal lotteries. The LP uses marginal lotteries λi,k,r (consumption) and µi,a,b,r (income)

rather than the joint lottery xi,k,a,b,r. This is valid because the IC constraints and the objective

depend on consumption and income separately through their marginals, and reduces the

number of decision variables from O(N ·K ·A ·B ·R) to O(N · (K +A ·B) ·R).

6. Occupational exclusivity. The set of allowed income pairs A excludes combinations where

both y1,a > 0 and y2,b > 0, enforcing that agents either work or run a firm but not both

simultaneously.

7. Solver. The LP is formulated as an AMPL model and dispatched to CPLEX (barrier method,

lpmethod=4) or Gurobi (method=2, crossover=0) for solution.
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