A Machine Learning Projection Method for

Macro-Finance Models*

Vytautas Valaitis Alessandro T. Villa
University of Surrey’ FRBCH
September 6, 2023
Abstract

We use supervised machine learning to approximate the expectations typically contained in
the optimality conditions of an economic model in the spirit of the parameterized expectations
algorithm (PEA) with stochastic simulation. When the set of state variables is generated by
a stochastic simulation, it is likely to suffer from multicollinearity. We show that a neural
network-based expectations algorithm can deal efficiently with multicollinearity by extending
the optimal debt management problem studied by Faraglia et al. (2019) to four maturities. We
find that the optimal policy prescribes an active role for the newly added medium-term matu-
rities, enabling the planner to raise financial income without increasing its total borrowing in
response to expenditure shocks. Through this mechanism, the government effectively subsidizes

the private sector during recessions.

Keywords: Machine Learning, Incomplete Markets, Projection Methods, Optimal Fiscal Policy,
Maturity Management.
JEL classification: C63, D52, E32, E37, E62, G12.

“We are thankful to Andrea Lanteri, Lukas Schmid and Matthias Kehrig for their encouragement. The paper received
the Student Award of the Society of Computational Economics and benefited from comments by Albert Marcet, Serguei
Maliar, Lilia Maliar, Swapnil Singh, and seminar participants at the Duke Macro Breakfast, the 2018 Baltic Economic
Conference, the Society for Computational Economics 24th International Conference, the 2018 Econometric Society
Summer European Meeting, and the 2019 Econometric Society African meeting. Disclaimer: The views expressed in this
paper do not represent the views of the Federal Reserve Bank of Chicago or the Federal Reserve System. Declaration of
conflicts of interest: none.

1LUniverSity of Surrey, Stag Hill, University Campus, Guildford GU2 7XH, UK. Email: v.valaitis@surrey.ac.uk.

$Federal Reserve Bank of Chicago, 230 La Salle St. Chicago, IL, USA 60604. Email: alessandro.villa@chi.frb.org.

mailto:v.valaitis@surrey.ac.uk
mailto:alessandro.villa@chi.frb.org

1 Introduction

In this paper, we exploit the computational gains that derive from the robustness to multicollinearity
of neural networks to extend the optimal debt management problem studied by Faraglia et al.
(2019) to four maturities. The hedging benefits provided by the additional maturities allow the
government to respond to expenditure shocks by raising financial income without increasing the
total outstanding debt. Through this mechanism, the government effectively subsidizes the private
sector in recessions.

We use a neural network (NN) in a supervised machine learning fashion to approximate the
expectation terms typically contained in the optimality conditions of an economic model, in the
spirit of the Parameterized Expectations Algorithm (PEA) with stochastic simulation, introduced by
den Haan and Marcet (1990) and in a similar fashion to Duffy and McNelis (2001). On the one hand,
stochastic simulation methods allow us to tackle problems with a high number of state variables,
since they calculate solutions only in the states that are visited in equilibrium (i.e., the ergodic set).
On the other hand, when the set of state variables is generated by a stochastic simulation, it is likely
to suffer from multicollinearity. In this context, this paper makes two contributions. First, we show
that an NN-based Expectations Algorithm can deal efficiently with multicollinearity by extending
the optimal debt management problem studied by Faraglia et al. (2019) to four maturities. Second,
we show that the optimal debt management policy prescribes an active role for the medium-term
maturities, enabling the planner to raise financial income without increasing its total borrowing
in response to expenditure shocks. We consider this problem a particularly interesting economic
application that also poses significant computational challenges for four reasons.

First, the number of state variables increases in the number and length of maturities available.
Second, this class of problems includes forward-looking constraints, and the problem can be made
recursive at the cost of adding even more state variables. Following Marcet and Marimon (2019),
we formulate the recursive Lagrangian to solve for the time-inconsistent optimal policy under full
commitment with multiple maturities. When markets are incomplete, the Ramsey planner needs to
keep track of all promises made in the previous periods. Because of these reasons, optimal maturity
management problems suffer from the curse of dimensionality (see Bellman 1961). For example, the
optimal debt management problem with four maturities considered in section 4 features 46 state

variables. Third, because of the maturities, many of these state variables are multicollinear when

the model is solved by using a stochastic simulation approach.! Fourth, this class of problems does
not have a stochastic steady state, as documented in Aiyagari et al. (2002), and tends to frequently
hit the borrowing and lending constraints. Such properties render the model particularly hard to
solve using perturbation methods around a particular point.>

In section 4, we use the methodology to study the optimal government debt management
policy when the Ramsey planner can issue an increasing number of debt instruments with different
maturities. Intuitively, the prices of longer maturities are typically more responsive to shocks
than prices of shorter maturities. This differential response creates opportunities for hedging by
borrowing in long-term and saving in short-term bonds. In this case, the value of liabilities falls
by more than the value of assets in response to negative shocks (see Angeletos 2002, Buera and
Nicolini 2004 and Faraglia et al. 2019). Additionally, the fact that short bond prices are not as
responsive to shocks allows the planner to smooth the price of new debt issuance by rebalancing
the portfolio toward the longer maturities in economic booms and toward the shorter maturities in
recessions. We find that the planner actively uses the additional medium-term maturities to exploit
both the hedging and the price smoothing benefits. The government holds leveraged positions in
all bonds and rebalances the portfolio with more emphasis on the shorter maturities in recessions.
We find that, when the number of available maturities increases from two to three (and four),
the total amount of outstanding debt becomes procyclical. The additional maturities allow the
government to respond to expenditure shocks by raising financial income without increasing the
total outstanding debt. Through this mechanism, the government effectively subsidizes the private

sector in recessions, resulting in higher leisure and less volatile labor taxes.

Literature Review This paper contributes to two strands of literature: (i) numerical methods in
economics and (ii) optimal fiscal policy.
In terms of methods, this paper builds on the seminal work of den Haan and Marcet (1990),

who introduced PEA. The idea of using neural networks to parameterize decision rules in a similar

IThe state space includes lagged values of the same variables (e.g., lagged values of outstanding bonds and Lagrange
multipliers). Multicollinearity in the state space might prevent standard regression-based algorithms from converging
because the estimated regression coefficients may never stabilize due to high estimation variance and because misspeci-
fication of the true policy function under multicollinearity may lead to severe prediction bias, as we show in section
2.5. Alternatively, people have used the stochastic simulation based on regularization, see Judd et al. (2011), or have
extended the PEA algorithm to Condensed PEA, see Faraglia et al. (2019). In section 5 we discuss how the NN-based
Expectations Algorithm improves upon these methods.

2Bhandari et al. (2017a) propose a method that allows one to approximate a system around a current level of
government debt, and Lustig et al. (2008) on the other hand, solve the optimal fiscal policy problem in incomplete
markets with seven maturities up to 7 periods using value function iteration on a sparse grid.

fashion to PEA goes back to Duffy and McNelis (2001). Our paper contributes to this literature by
showing that an NN-based Expectations Algorithm can deal efficiently with multicollinearity by
extending the optimal debt management problem studied by Faraglia et al. (2019) to more than
two maturities. In particular, we exploit the computational gains to study the optimal government
debt management problem of Faraglia et al. 2019 with three and four maturities, which yields
new economic insights. Note that PEA has been extended more recently (see Faraglia et al. 2014
and Faraglia et al. 2019) to deal with multicollinearity (Condensed PEA) and over-identification
(Forward-States PEA). Our methodology builds on Condensed PEA and Forward-States PEA,
in the context of optimal fiscal policy, allowing for machine learning to reduce the state space
endogenously and handling multicollinearity effectively when a stochastic simulation approach is
adopted. In contrast, Condensed PEA achieves this result by introducing an external loop that tests
a subset of the state space as a candidate to solve the model.

In contemporaneous work, Maliar et al. (2021) and Maliar and Maliar (2022) discuss how
neural networks can handle multicollinearity. In particular, they do so in the context of the
Krusell and Smith (1998) model. We complement their work by demonstrating the robustness to
multicollinearity in the context of optimal fiscal policy. Additionally, we show that the interaction
between the capability of a neural network to deal with multicollinearity and its flexibility in
approximating generic policy functions plays an important role in generating unbiased predictions.
In section 2.5, we show that if a researcher pre-commits to approximate the policy functions with
polynomials that are misspecified then, under multicollinearity among the state variables, the
predictions will be biased. Thanks to the flexible non-parametric nature of a neural network, which
does not require making ex-ante assumptions about the functional form of the policy functions,
this problem disappears.

PEA can potentially be used in combination with other standard econometric techniques that
tackle the problem of multicollinearity, as in Judd et al. (2011). Similar to our paper, Judd et al. (2011)
adopt a stochastic simulation approach and show how already established methods in econometrics
can be used to alleviate the multicollinearity problem using a multi-country neoclassical growth
model. We discuss the relation between our method and the methods of Faraglia et al. (2019) and
Judd et al. (2011) in greater detail in section 5.

Other papers that use machine learning to solve economic models include Scheidegger and Bil-
ionis (2019), Azinovic et al. (2021), Fernandez-Villaverde et al. (2020), and Duarte (2018). Ferndndez-

Villaverde et al. (2020) use deep neural networks to approximate the aggregate laws of motion

in a heterogeneous agents model featuring strong non-linearities and aggregate shocks. Duarte
(2018) casts the economic model in continuous time and uses neural networks to approximate
the Bellman equation. Maliar et al. (2021) and Azinovic et al. (2021) approximate all the model
equilibrium conditions using neural networks and use the simulated data to train them. Azinovic
et al. (2021) solve the life-cycle model with borrowing constraints, aggregate shocks, and financial
frictions using unsupervised machine learning. The main difference of our paper is to leverage on
supervised machine learning to deal effectively with the problem of multicollinearity typical of
stochastic simulation approaches. In this context, we show how our algorithm can alleviate the
curse of dimensionality, allowing us to explore the problem of the optimal maturity structure of
government debt in a more realistic environment.

Our application also contributes to the strand of literature on optimal fiscal policy. In particular,
it is relevant to the literature on the optimal maturity structure of government debt.? Lustig et al.
(2008) find that the optimal policy prescribes an almost exclusive role to the longest maturity in
a model with no-lending constraints and a New-Keynesian model where bonds are nominal. In
our setting we allow for government lending and study the hedging benefits of a choice between
multiple maturities of real bonds. Bhandari et al. (20174) study the optimal maturity structure in an
open economy with two maturities, and Bigio et al. (2022) allow for a finite number of maturities in
an economy with liquidity costs of issuing debt, where liquidity costs differ by maturity. Faraglia
etal. (2019) is the closest paper to ours and studies the role of frictions in a closed economy with two
types of bonds. Solving the Ramsey problem considered in this paper is particularly challenging,
as the dimension of its state space increases significantly in function of the length of the maturities
and the number of bonds. Moreover, this class of problem includes forward-looking constraints,
so the commonly used recursive representation can not be adopted. Marcet and Marimon (2019)
provide an alternative formulation to solve for the time-inconsistent optimal contract under full
commitment: a recursive Lagrangian or saddle-point functional equation. The solution involves
adding even more state variables to the original problem. These additional state variables, necessary
to recursify the problem, create history dependence. In this context, we use our methodology
to extend the literature to study optimal debt management with three and four maturities in a
closed economy. We find that the optimal policy prescribes an active role for the medium-term

bonds. The additional maturities enable the planner to raise financial revenue without increasing

3Aiyagari et al. (2002), Angeletos (2002), Buera and Nicolini (2004), Lustig et al. (2008), Faraglia et al. (2019), Bhandari
et al. (2017a), and Bigio et al. (2022).

the total outstanding debt, in response to a positive expenditure shock. We show that, through
this mechanism, the government uses the additional maturities to effectively subsidize the private
sector in recessions, resulting in more leisure and less volatile labor taxes.

The paper is organized as follows. Section 2 is a user guide that introduces the reader to PEA,
machine learning, and how to combine them in a simple Neoclassical Investment Model example.
Section 3 introduces the reader to the problem of multicollinearity using a one-bond economy
studied in Aiyagari et al. (2002) and describes the details of the NN-based Expectations Algorithm
using a general model with N maturities. Section 4 presents and discusses the calibration and the
quantitative results for the extended model with three and four maturities. Section 5 discusses
and compares the NN-based Expectations Algorithm to other state-of-the-art methods. Section 6

concludes.

2 User guide: Machine Learning and PEA

This section serves as an introduction to supervised machine learning. Specifically, it focuses on
how to use it to solve a dynamic economic model in a similar fashion to PEA with stochastic
simulation. Hence, the purpose of this section is solely to introduce the methodology in a simple
environment. The method allows us to investigate more realistic models of increased complexity.
Its benefits are highlighted in the application presented in section 3 and arise from the ability of the
algorithm to approximate non-linear policy functions in the presence of a large and multicollinear

state space.

2.1 Environment

The typical dynamic model contains intertemporal Euler equations, intratemporal Euler equations,

and laws of motion

fInter(Ct, X¢) = BE [g(ct+1, Xe1)|Xe],
fIntra(Ct’Xt) =0,

Xip1 = h(Xs, ¢4, 8rv1),

“For a general introduction to machine learning, the reader can refer to Hastie et al. (2009). For a course
tailored to economists, the reader can refer to the lecture notes by Jests Ferndndez-Villaverde available here:
https:/ /www.sas.upenn.edu/ ~jesusfv/teaching.html.

https://www.sas.upenn.edu/~jesusfv/teaching.html

where ¢; € R€ is a vector of C controls (with E dynamic choices and C — E static choices), X; € RS
is a vector of endogenous and exogenous state variables, § € (0,1) is a time-discount factor,
finter : RC x RS — RE, fIntra : RC x RS — RS F, ¢ : RE x RS — RE, and &1 € R! is a vector of
innovation shocks. For example, in the stochastic neoclassical investment model, c; corresponds to
consumption, fI"er corresponds to the marginal utility of consumption, fI"'@ does not apply if the
model does not include intratemporal choices (e.g, labor), ¢ = f(ct+1) (thaKf:ll +1-— 5), X =
{K}, z;} is a vector that contains capital stock and TFP, and h(X;, ¢;, §1+1) is a function that describes
the laws of motion for capital stock, given by the resource constraint Ky = (1 — 6)Ky — ¢; + z:K¥

and the TFP Markov process, i.e.

Kt+1 (1 — 5)Kt — ¢+ ZtK“
Xiy1 = h(Xt/ Ct,§t+1) = = '
log z;41 plogzi + Ci 1

The typical PEA approximates the conditional expectations in the intertemporal Euler equations as

polynomial functions of the state space X;
Ve € [L E] : E [ge(crr1, Xi1) [Xe] = Pu(Xt; 17e).-

The polynomial typically used in the PEA is

Py (Xt;17e) = exp (’76,0 + Z‘i i [1eps - (In Xs,t)p]> ’
p=1s—
where 17 = [1e,0,1e1,1, " ,1e1,, - - - |. For a given sequence of exogenous aggregate shocks {&; }1_;,
an initial guess of the polynomials” parameters 7!, the standard stochastic PEA (described in
algorithm 1) aims to find parameters " = {1}, - - , 5} } that solve all Euler equations and all laws
of motion.

When X = {Xt}tT:_Tl0 is generated by a stochastic simulation as in algorithm 1, the matrix XTX
is often ill-conditioned.” Hence, with a finite-precision computer, the inverse of X' X cannot be
computed reliably and it is challenging to compute the linear regression in line 9 of algorithm 1.
This problem potentially leads to jumps in the regression coefficients and failure to converge.

Moreover, in the simple illustrative case of the neoclassical investment model, a first order

STet A = A1, -+, Ag be the vector of eigenvalues of the matrix XTX, such that AM>A > > Ag > 0. 1lI-
conditioning refers to the fact that the ratio A1 /A, is large, implying the matrix is close to being singular.

Algorithm 1 Stochastic (simulations) PEA

Precondition: initial state X, sequence {¢;}L_, initial guess 77}, and dampening 0 < w < 1
1: while 7, converges do
22 fort< 0toT do > Generate X = {X;}L
ct + Solve fIta (¢, X,) = 0and f™€(¢;, X;) = BPy(Xs; 1)
X1« h(Xt,¢1,Gri1)
end for
fort <~ 0toT —1do > Generate Y = {y;}/
v < g(crv1, Xig1)
end for
Al (XTX)"1XTY > Regress to find new weights
10 gl w-i+ (1 —w)- 7, > Update with dampening
11: end while

polynomial (P = 1) is enough to approximate the expectation term in the Euler equation. Generi-
cally speaking, richer models that feature a larger state space and non-linearities require the use

of higher order approximation (P > 1) and/or cross-state terms. These circumstances further
T

aggravate the multicollinearity problem as the matrix XTX, with X = {Xt, th, e } , is even

t=0
more ill-conditioned.

2.2 Supervised Machine Learning

In this paper, we use machine learning as a tool to learn how to represent the function that maps
from the set of simulated state variables {X;}!_, to the set of simulated terms {y;}/_'. For example,
in the neoclassical investment model with log-utility over consumption, this would serve the

purpose of representing the function
P(Kf, Zt) =E |:C;4}1 (Zt+1IXK?J:1l +1-— (5) |Kt, Zt} .

Machine learning proposes a flexible structure for the function P and infers a function from the
generated data {Xt}tT:’Tl0 (which we label training data) to the set of generated examples {yt}tT;Tl()
(which we label training examples). This particular task of using machine learning to learn a function
that maps from inputs to outputs based on training data and examples is referred in the literature
as supervised learning. And neural networks are a powerful class of universal approximators able to

deal with strong non-linearities.

2.3 Fitting Neural Networks

In the NN-based Expectations Algorithm, the equivalent of the regression phase is called the training
phase. As described in appendix C, a neural network is characterized by unknown weights {w, ¢}.°
Similarly to a regression, the objective is to seek weights such that the neural network fits the

samples {X;, y;}/_,. More precisely, the problem is to find

{wO,m/wm; m = 1/2/ T /M}/ {IPO,E/IIJE/‘ e = 1/2/ T /E}/

such that the sum of squares

ZZ Yte — fe Xt/w lP))

e=1 t=

is minimized. In a standard linear regression setting, typically (but not necessarily) this problem is
solved analytically. This problem could also be solved using a gradient iterative procedure (e.g.
gradient descent). This approach is typically more robust to multicollinearity since it does not
require inverting the matrix X7 X. An iteration 1 of gradient descent updates the weights of the

neural network according to

IRy (w

wi D —) Z awm , 1)
(n+1) Ry (w
Y = g k_Zl 3 we : 2

where the gradient can be derived using the chain rule for differentiation. More specifically, the

partial derivatives az;;}(m) and aRkﬁ(w)

in equations (1) and (2) can be efficiently computed through a
two-pass algorithm called back-propagation (Rumelhart et al., 1986). Back-propagation applies
the chain-rule sequentially, iterating from the output layer to the input layer. Each neuron in
the hidden layer receives and dispatches information only from and to neurons that are directly
connected. For this reason, this process can be efficiently parallelized. When the back-propagation
algorithm is applied to a single-layer neural network, it is known as the delta rule (Widrow and
Hoff, 1960). One cycle through the full training samples is called a training epoch. In other words,
completing a training epoch means that all training samples have had a chance to update the

model parameters. Batch (or offline) learning builds the model digesting the entire training set at

®Appendix C contains details about the neural network structure used in this section.

once, whereas online training allows the network to update the weights as new observations come
in. The former is typically implemented by batch gradient descent, when the latter can typically
handle larger training sets and is implemented by stochastic gradient descent. When the neural
network weights are updated, the speed at which the model changes can be updated through the
parameters <y, in equations (1) and (2). The parameter 1, is called the learning rate and it is similar
in spirit to a dampening parameter. Intuitively, it represents how quickly the model “learns.” It can
either be a constant (for batch learning) or optimized dynamically at each update by minimizing
the error function.

Other aspects that can affect the fitting of the neural network are: (i) the initial weights, (ii) the
problem of overfitting, (iii) inputs normalization, and (iv) the number of neurons. Initial neural
network weights are chosen as near zero random values. Figure 9 suggests that when the weight «
is close to zero, the sigmoid approaches a linear function. This choice of initial weights allows the
model to adapt to non-linearities starting from the linear case.” In practical terms, we solve the
model by first initializing the neural network to a simplified version of the model. For example,
before solving the neoclassical investment model as described in algorithm 2, it is possible to
solve the model analytically (in this particularly case, by setting é = 1), simulate an equilibrium
sequence with the analytical solution, and use it to train the neural network. In a more complicated
scenario, such as the optimal maturity management problem presented in this paper, we first
solve the model without debt (i.e., the government only uses the income from taxes to finance
government expenditure) to first initialize the neural network. The model should not overfit the
data. Since stochastic simulation methods (such as PEA) only explore a subset of the ergodic set of
state variables (i.e., those combinations of state variables simulated in the equilibrium), we optimize
the model for out-of-sample predictions. We split the simulated data randomly in the training set
(in-sample) and validation set (out-of-sample) with a 70-30 proportion, respectively.® The number
of epochs is determined by maximizing the neural network’s performance on the validation set. All
inputs are normalized to have mean zero and unitary standard deviation. This procedure ensures
that all inputs have a comparable magnitude. If some inputs were of a bigger order of magnitude,

the weights linked to those inputs would experience a faster update speed.’ This could potentially

7Substantial research effort has been put into choosing the initial weights depending on the specific neural network
architecture (for example, see Glorot and Bengio, 2010 for deep neural networks).

8We did not find a significant difference in allocations and forecast errors when we changed the training set to be 50%
and 90% of the sample.

9In the context of deep neural networks, the distribution of each layer’s inputs varies during the training phase, since
the weights of the previous layers change as well. Typically, this requires adopting lower learning rates and carefully
choosing initial parameters. This problem is known as internal covariate shift. In this context, batch normalization can

impair the learning process and lead to a slower convergence, or worse, mean squared prediction
errors. The choice of the number of neurons in the hidden layer should be guided by the trade-off
between in-sample fit and out-of-sample performance, as illustrated in figure 1 (the figure refers
to the neoclassical growth model that we present as an illustrative example in the next section).
Increasing the number of hidden units tends to increase the in-sample fit but leads to over-fitting.
We select the number of units by minimizing the mean squared prediction error calculated on the

validation set.

-4
10 £ 10 o
o
9.8 r o o
o 0
o (o]
06| ° o S , 7R
o
9.42 g==3~"" o
oo
o° o o7 o o
924
e 09 ¥ 95 %0 o
QQ (o] - L .
o o o 5 o 00
88 I
o o
861 o
o o
84t
o
82f
8 1 1 1 1 1 1]
5 10 15 20 25 30 35

Number of Hidden Units

Figure 1: Root Mean Squared Error (RMSE) in function of the number of neurons in the hidden layer
Notes: The figure shows the relation between the number of hidden units and neural network performance in the
neoclassical growth model. Solid blue line - network performance on the training set. Dashed purple line - network
performance on the validation set. Circles show network performance for a specific number of units. Lines represent

the moving averages.

2.4 Example: Neural Networks and PEA Applied to the Neoclassical Investment Model

This section describes the implementation of the NN-based Expectations Algorithm applied to
the neoclassical investment model. We use Matlab and we leverage on the Statistics and Machine

Learning Toolbox. The illustrative example code, together with the comparison with other methods

achieve higher a learning rate (see Ioffe and Szegedy, 2015) by reducing the problem of internal covariate shift.

10

and the procedure that selects the optimal number of neurons, is publicly available.!’ The purpose
of using Matlab and disseminating this application is to facilitate the adoption of machine learning
in economics with well known tools in an easy-to-adopt package. In this example, we use a
single layer neural network with 12 neurons (this number of neurons minimizes the mean squared

prediction error out-of-sample as shown in figure 1).

Algorithm 2 NN-Based Expectations Algorithm applied to the Neoclassical Growth Model

Precondition: parameters B, a, 5, p, ¢, k1, and ¢; utility functions u(c) = log(c), uc(c) = ¢ 1.

> Simulate log AR(1) process and an initial guess for k and c

log(zt41) <= p - log(zt) + e
kpp < [(1—B(1—08))/(B-a-z)"/ &
CL 21Ky — 6k

> Create and train the NN using the initial k; and z alongside the RHS;
Net « feedforwardnet(12)

RHS; < uc(cpr1)[a - ze41 -k’}‘,t_jl +1-]

Net <« train(Net, [k;+, z¢], RHS;)

ko < ki

10: > Solve the model

11: while error > € do

12 > Generate {c;}]_; and {ki}]_,
13: fort < 1to T do

14: > The output of the function Net is the expectation object, given the current state
15: IEt[RHSt+1] — Net([kf; Zt])

16: cr < uy (B - B [RHS; 1))

17: kt+1<—Zt'k?+(1—5)'kt—Ct

18: end for

19: > Train the NN using the new k and z alongside the above RHS
20: RHS; < uc(cpq1) - (@~ 241 - ki‘;ll +1-19)

21: Net < train(Net, [k, z¢|, RHS;)

22: > Checking convergence and updating k,j,

23: error <— max(|koq — k¢|)

24: kold,t +— ki

25: end while

We first calculate the steady-state, which is particularly useful to build a guess to initialize the
neural network weights. The command feedforwardnet(12) creates a neural network with one hidden
layer that contains 12 neurons. By default, this neural network is trained (through the function
train) with Levenberg-Marquardt back-propagation, and has a maximum number of epochs set to

1000. We generate an initial dataset using the deterministic steady-state and substituting the value

1'Downloadable from https:/ /www.alessandrotenzinvilla.com /research.html.

11

https://www.alessandrotenzinvilla.com/research.html

of the shock.

We then proceed to solve the model using the equivalent of algorithm 1, except we use the
neural network to approximate the expectation contained in the optimality conditions of the model.
We call this the NN-based Expectations Algorithm, and a detailed description of the code is laid
out in algorithm 2.

In a more complex environment with a large state space - where a stochastic simulation ap-
proach is desirable - the advantages of this method lie in the interaction between a satisfactory
approximation of the model non-linearities and the degree of multicollinearity among the simulated
states. In PEA the choice of polynomials is quite arbitrary as the policies” functional forms are
ex-ante unknown (one has to rely on an ex-post accuracy test to make sure that the approximation
is satisfactory). If the functional form of the chosen approximator cannot satisfactorily approximate
the equilibrium policies, the presence of multicollinearity can lead to bias in the parameter estimates.
The neural network does not suffer from this problem as it is a universal approximator. In the next

section, we conclude the user guide illustrating this point.

2.5 Neural Networks and Multicollinearity

One general problem is that the functional form, not just the parameters, that links the state
variables and the approximated terms is ex-ante unknown. A standard practice is to make these
approximations using polynomials with order and cross-terms typically chosen through trial and
error. When the policies are correctly specified, multicollinearity leads to consistent, yet noisy
parameter estimates. However, if the chosen functional forms are not suitable to approximate
the true policy functions, multicollinearity can potentially lead to severely biased and less precise
predictions, as we show in the following simple example.

For simplicity, imagine that we would like to approximate the policy function of the neoclassical
investment model with two TFP shocks, full depreciation § = 1, and log-utility u(c) = logc. The
true functional form of the policy function for the capital choice (in this simple case it can be solved

analytically) is

kiv1(ke, z1,6,224) = Paexp(zir) exp(zae)ki, 3)

where the true parameters are « = .36, f = .95, and z;; is a log-AR(1) process with persistence

.8 and standard deviation of the innovation shock .0224. Moreover, z; is determined using the

12

following formula
Zy = /\22 + (1 — /\)Zl.

where 2, is a log-AR(1) process with persistence .8 and standard deviation of the innovation shock
.0224.

We generate, through stochastic simulation, equilibrium sequences {X;,y:}_, where y; = k1,
and X; = [k; z1¢ zo4] is a vector that contains the three state variables. The objective is to use
{Xt,yt}tho in order to infer the functional form of equation 3. When X = {Xt}tT:O is generated
by a stochastic simulation as in algorithm 1, the matrix X X is often ill-conditioned. We simulate
different degrees of multicollinearity by randomly generating sequences {xy;}/, and {x2:}_,
with different degrees of correlation (i.e., different values of A € [0,1]), and we calculate the
associated {y:}!_, using equation 3. We evaluate the success of the prediction in function of
different degrees of multicollinearity using a (i) linear polynomial and a (ii) neural network. Note
that on purpose we incorrectly assume that the mapping between state variables and policy is linear
yi = Bix1s + Baxos + Baxss.t! Also note that the neural network has a flexible non-parametric
nature and, therefore, does not require making ex-ante assumptions about the functional form of
the policy functions. The success of the prediction is assessed using the mean squared prediction
error (MSPE), which is the average prediction error at time ¢ over many training samples. The error

can be decomposed in bias and variance terms

MSPE; = E [(y: — 9:)?] = [y — E(§:))> + E [9: — E(9:)]". (4)

Biasf Variance;

Figure 2 reports the average MSPE for the entire validation set in function of the correlation between
the two exogenous shocks {x2;}1 ; and {x3:}L,. Note that the higher the correlation, the higher

the multicollinearity between {x,;}L , and {x3:}]_,.

e purposely choose a polynomial that cannot correctly approximate the true policy functions, since often the true
functional form is ex-ante unknown. We check that the results are robust to many types of misspecification. However,
the purpose of the following example is simply to illustrate the possibility that misspecification under multicollineatity
can lead to biased predictions. This problem would not arise with a universal approximator, such as neural networks,
because they do not require prespecification of the functional form.

13

100

0
0.75 0.8 0.85 0.9 0.95 1

p(x2,x3)

Figure 2: Mean squared prediction error with a neural network and a polynomial
Notes: The figure shows the mean squared prediction error 1/n Y} ;| [y —]E(y})]2 in function of the correlation

between x; and x3. Blue line with circles - NN, purple line with crosses - polynomial regression.

The higher the correlation between the state variables, the higher the inaccuracy of the polyno-
mial regression model. Moreover, if we decompose the MSPE using equation 4, we find that most
of the prediction error comes from the bias squared term as shown in figures 6 and 7 in appendix
B.4. Because of its non-parametric nature, the neural network adapts to the shape of the function
to approximate without having to guess the functional form ex-ante. This experiment suggests
that the non-parametric nature of a neural network is particularly handy in solving economic
models characterized by policy functions with functional forms that are ex-ante unknown and that
potentially contain significant non-linearities and whose domain presents multicollinear states.'?

In the next section, we illustrate the use of neural networks in a model that contains such features.

3 Model and Solution Method

The model we work with is an extension of the one-bond economy analyzed in Aiyagari et al. (2002)
and extended to two bonds in Faraglia et al. (2019). We work with this model for two reasons.

First, it is a difficult computational problem that features a large multicollinear state-space with

12Note that another option would be to specify a rich polynomial structure with many higher order and cross terms.
One problem with such approach is that higher order terms of the same variable are extremely multicollinear.

14

non-linearities difficult to approximate with a parametric approach (i.e., borrowing and lending
constraints).!® Second, extending Faraglia et al. (2019) to more than two maturities is a relevant
economic problem since it helps in determining the optimal maturity structure of government debt.
We start by introducing the reader to a one-bond economy with a single maturity of N periods. We
then present our methodology in a general model with N maturities. The numerical advantages of
our methodology allow us to explore the optimal maturity structure of government debt with three

bonds. Quantitative results are presented in section 4.

3.1 Illustrative Model: One-Bond Economy

The economy is populated by a representative household with preferences over consumption c
and leisure /. The representative household chooses sequences of consumption {c; };° , and leisure

{l}72, to maximize its time-0 expected lifetime utility

IEOti:)ﬁf[u(ct) +o(ly)],

subject to the budget constraint
profa o= 1—w)1—1)+p b,

where bY indicates an N-periods maturity bond and pY is its corresponding price.'* The only source
of aggregate risk in the economy is an exogenous stream of government expenditures {g;}: . In
each period, the government can finance g; by: (i) levying a proportional labor tax 7; and (ii) by
issuing a non-state contingent bond with maturity of N periods. Hence, the government’s budget
constraint is:

ge+py oY =w(1—1) + pibpy.

The aggregate resource constraint of the economy is c; + g = 1 — I;, where 1 — I; is the period’s
GDP. We assume the government can buy back and reissue the entire stock of outstanding debt in
each period. The government sets taxes and issues debt to solve a Ramsey taxation problem. We

adopt the primal approach and assume the government’s ability to borrow and lend is bounded.

13The non-parametric nature of a neural network makes it suited to approximating policy functions with strong
non-linearities, which would be harder to capture with polynomials.

4n principle, households are able to trade government securities in the secondary market. However, since we assume
households are identical, there is no trade in equilibrium and, for ease of notation, we omit these trades from the
household’s budget constraint.

15

Under these conditions, the government’s problem is

max [Ey Z,Bt [u(ce) +o(1—cr —gt)],
{eedi2o b}, t
subject to a sequence of measurability constraints!®
bﬁlﬁN]Et [UeriN] — bg\lﬁNil]Et [tei—14N] — Qethet + (Uer —v1) (gt +) =0,
with borrowing and lending limits'®
M>by, M<DbY.

The government’s optimality conditions are

Uer — U1+ i (theerCr + U + v e(cr 4 1) — U1) + teei (Pe—N — llthJrl)bf\]_NH =0,)

e = Ei(uepin) " |Er(uersnpiren) + é’;]l\,t - %LNt , (6)
b ABNE(ueiin) = bY BN B (uepin-1) — Qetter — (et — 014) (ge + ct), (7)

where i is the Lagrange multiplier on the time t measurability constraint, and ¢;7¢ and ¢y ¢ are the
Lagrange multipliers on the upper and the lower bounds, respectively. By issuing debt at time
t, the government commits to increasing taxes and/or to reissuing debt at time t + N. When the
government sets taxes between time ¢ and time ¢ 4 N, it needs to take into account its past actions
in the form of all lags of the state variables up to N. More formally, the Ramsey planner’s state
space X; is

X = {gtr{ﬂt—i}fiy{bf\’i f\[_ol}-

The state space contains 2N + 1 variables, with many lags of the same state variable (e.g., 1), which
tend to be highly correlated with each other. Moreover, equation 6 reveals that the Lagrange
multiplier on the implementability constraint y; follows a random walk, creating an additional
source of multicollinearity between the state variables. We solve the model with maturity N = 10,
and we report in figure 3 the autocorrelation function of the simulated equilibrium bond’s sequence

{bN}. Tt is clear that the previous 10 lags of the same variable, which are all part of the state space,

15See Aiyagari et al. (2002) for details on how to use the recursive Lagrangian approach in this context.
16Ny > bﬁ_l is the government saving constraint, which is equivalent to a household’s borrowing constraint.

16

are highly correlated with each other in the simulated sequence.

1’0Q‘

“
‘0

0.95 o

0.9

0.85

g

1 2 3 45 6 7 8 9 10
Lag

Figure 3: Autocorrelation function of the equilibrium bond sequence
Notes: The figure shows the autocorrelation function of bg\] . The numbers are obtained after simulating the model
equilibrium dynamics for T=5000.

For this reason, the model is hardly solvable using PEA (algorithm 1). In the literature, this
problem has been tackled by an algorithm called Condensed PEA. Condensed PEA proposes to
approximate the expected values in equations 5, 6, and 7 using functions of a subset X¢ of the
state space X; (X is also called the core set). These approximations are E;(u¢+n) =~ Py (XS;171),
Ei(terin-1) = Pa(XE;172) and By (ue sy Nper1) = P3(XE;13), where both the functions and the core
set (including its cardinality) are ex-ante unknown. The subset X© of the information set X is
selected through an iterative procedure called Condensed PEA. In essence, this method adds an
additional loop to PEA and keeps extracting orthogonal components from the state space, similarly
to the Principle Component Analysis (PCA), but the number of factors does not have to be chosen
ex-ante. A more detailed description of the procedure can be found in section 5 algorithm 4, where
we compare our methodology to existing ones in the literature. In the next section, we present our
methodology in a model with N maturities. Due to the presence of multiple lagged bonds, the

multicollinearity problem is further accentuated.

3.2 Optimal Maturity Management with N Bonds

The economy is populated by a representative household with preferences over consumption c

and leisure . The representative household chooses sequences of consumption {c; };°, and leisure

17

{1}, to maximize its time-0 expected lifetime utility:

]EQZ,B Ct +v lt)]

subject to the budget constraint:

N N

Y pibiy +ee=(1-7w)1-1)+) pib,

i=1 i=1
where b! indicates an i-periods maturity bond and pt is its corresponding price. The only source of
aggregate risk in the economy is an exogenous stream of government expenditures {g;}{*,. In each
period, the government can finance g; by: (i) levying a proportional labor tax 7; and (ii) by issuing

non-state contingent bonds with maturity 1, - - - , N. The government’s budget constraint reads

szt 1bl =Th — gt + Zpt t+1-

Sequential Formulation of the Ramsey Problem Combining the technology constraint, ¢; + g; =
ht, with the household’s labor optimality condition, 1 — 7 = v;;/u;, yields an expression for

surplus

0
st=Tihi — g =i — (L= w)hi = e — - (cr + g0).

c,t

Substitute bonds prices p; ;, pinned down by the household’s Euler equations, to get

b]E z 1 Ue, Hetti—1 | _ N bi E iUct+i
Z y =si+) b E B
c,t u

i=1 ot

with borrowing and lending limits'”

Vi: M> bt+1’ M < bt+1r Miotal > th-i-l/ Migrar < th+l
i=1

My > bﬁ_l is the government saving constraint, which is equivalent to a household’s borrowing constraint.

18

The optimality conditions are

z

Ct P Uct — Upp + Yt [Mc,t — U1+ Uee €+ vp (e + gt)] Z(I/‘t i~ Plt—z‘+1)b,l;_i+1ucc,t =0,

i=

i i Total Total
ZU,t éth ér ota ér ota]
+ ,

Vi, b£+1 DU = [Etuc,t+i]_1 Eiptruepyi +

BB 131 ﬁl
.N bi i—1Uett+i—1| _ N bi iUct+i
e LB | BT Y B

i=1)

i=1 ot

where ¢;; and ¢+ are the Lagrange multipliers on the upper and the lower bounds, respectively,
and Ca‘f}al and Cfﬂtal are the Lagrange multipliers on the upper and the lower bounds on the total
bond portfolio. In the following section, we describe our computational strategy in detail. Details

on the implementation and results using Epstein-Zin preferences can be found in appendix A.

3.3 NN-based Expectations Algorithm

In this section, we describe the main algorithm, which is an extension of the basic idea illustrated
in section 2.4, applied to an optimal fiscal policy model with incomplete markets and multiple
maturities. Here we present the key steps, while implementation details can be found in appendix
B.1. There are N bonds available with maturities from 1 to N periods. The state space at time
tis Iy = {g, {{0_ 30 1Yy, {mi—x}2,}. The neural network needs to approximate E; [],

E¢ [pt+ittc4i), and Ey [ues1i—1] in function of Z;. We model these relationships using one single-
layer neural network ANN (Z;). In particular, if the long maturity is N > 1, then the terms to

approximate are

ANNYT) = E [ues | i) fori=11,..,N],
ANNL(L) = E [pys1eryi|Zy] fori=[1,..,N],
ANN3() [Mc fi— 1|It] fori = [1,..., N]

For example, in the two-bond case there are six terms to approximate and, if the short bond has 1

period maturity, they reduce to five.'® Given starting values for y; and {b.}Y | and initial weights

18Use S and N to denote short- and long-bond maturities, respectively. The six terms are E¢ (i1 n), E¢ (e 1 n-1),
Ef(ueprN—1tt+1), Et(uerrs), Et(uepys—1), and E¢(ucp4gps41). The term that does not require approximation in the
latter case is IE¢(u¢ 4+5—1), which becomes just . when S = 1.

19

for ANV, simulate a sequence of {c¢}/_;, {p:}1; and {{b},,}N,}], as follows."”

1. As suggested by Maliar and Maliar (2003), we initially restrict the solution artificially within
tight bounds on all debt instruments, and refine the solution gradually while we open the
bounds slowly. These bounds are particularly important and initially need to be tight and
open slowly, since the neural network at the beginning can only make accurate predictions
around zero debt - that is our initialization point. Additionally, we use penalty functions
instead of the ¢-terms to avoid out of bound solutions.? Since y; is identified by the first
order condition for b}, it is over-identified if the number of available maturities is greater than
one:

e G, B R

Vi : = ANNYUT) T |ANNY(T) + 224 — 20 4 22 .
1 Ht 1(t) 2(f) ‘Bz ,Bl ﬁz /31

We tackle this problem by using the forward-states approach described in Faraglia et al. (2019).
This involves approximating the expected value terms at time ¢ + i with functions of the state
variables that are relevant at t + 1 instead of t and invoking the law of iterated expectations,
such that we calculate E; AN N (Z;,) instead of AN'N"(Z;). This is done in two steps. First,
we replace the AN N(Z;) terms in the optimality conditions with IE; AN N(Z;,1) and, in-
stead of approximating E; (1), E¢(t4cs1i—1), and E; (1. ¢4ipr+1), we use the information set
Zi41 to approximate s 1 (U s4i), Epy1(Uepyio1), and Eepq (e s1ipi+1). Then, we use Gaussian

quadrature to calculate the conditional expectations of the neural network evaluated at Z;, .

2. To perform the stochastic simulation, choose T big enough and find {c¢;}!_,, {s:}/_; and

{{b}, 1}, }[_; that solve the following system of (N + 2)T equations:

. . —1 . l:fi gi (';'Total gTotal
Vii = [BANN(Z)] []EtANN’Z(LH)Jr b G R R

Uetr — 01t + 1 25; [uc,t — Ot + Uee,tC + Ull,t(ct + gt)] + Zzlil (.utfi - ,utfiJrl)bi_i_._lucc,t - O/
YN BB ELANNG(Z1) = uesst + LN bl BIELAN NG (Tiiq).
8)

The system of equations (8) contains multiple Lagrange multipliers (arising from the in-

1The network can be initially trained using an educated guess for {bff 11 }fi 1,Ct, pit. It is important that the initial
training sequence is not constant. More details can be found in appendix B.1.

20We also find that including ¢ terms explicitly in the training set improves prediction accuracy. More details can be
found in appendix B.1.

20

equality constraints). This poses a significant computational challenge. Ideally one would
numerically solve the unconstrained model and then verify that the constraints do not bind
and if, for example, MN binds, set b{‘frl = MY and find the associated values for consumption
and leisure. In a multiple-bond model this is challenging because after setting b ; = MY, one
needs to check if other constraints do not bind in the recomputed solution and, if they do, en-
force them and recalculate the solution again,d and so on and on. To overcome this challenge,

we augment the objective function with the following differentiable penalty function:

§- (bl — M)+ [log(1+¢- (b, — M))dbl,,, b, > M
Vi: E(bjz) =140, ifM <bi, <M ,

%) (Mi - bi+1)2 + f log(1+¢- (Mi - bi+1)) dbi+1f if bi+1 <M

where ¢ controls the severity of the penalty. More details can be found in appendix B. The
system of equations (8) can be re-derived after including the aforementioned penalty function.
We solve the system of equations (8) using the Levenberg-Marquardt algorithm. Since this is
a local solver, there is no guarantee that the system is solved globally given a particular initial
guess. In our implementation we attempt to solve the system for at most maxrep number of
different starting points. If the solution errors are below our specified threshold, the algorithm
proceeds with the solution and moves to the next period t. If the solution errors are not below

our specified threshold, we pick the solution with the lowest error.

. If the solution error in the stochastic simulation is large, or a reliable solution could not be
found, the algorithm automatically restores the previous period neural network and performs
the stochastic simulation with a reduced bound. More specifically, if an unreliable solution
has been detected in iteration 7, the algorithm restores the iteration i — 1’s environment and

performs the stochastic simulation with

Bound; ; = &« - Bound; 1 + (1 — &) - Bound;_».
. If the solution calculated shrinking the bound at iteration i — 1 is still not satisfactory, the

algorithm does not go back another iteration but uses the same neural network and tries to

lower the Bound,_; again toward Bound;_,. Once a reliable solution is found, the algorithm

21

proceeds to calculate the solution for iteration i again, but with
Bound; = Bound; ; + (Bound; ; — Bound; »).

In this way;, if an error is detected multiple times we guarantee that both Bound; and Bound;_
keep shrinking toward Bound,;_,, and there should exist a point close enough to Bound;_,

such that the system can be reliably solved with both Bound;_; and Bound;.

5. If the solution found at iteration i is satisfactory, the neural network enters the learning phase
supervised by the implied model dynamics, the bounds are increased, and a new iteration

starts.

We repeat this procedure until the neural network predictions converge and the simulated
sequences of {b}}Y | and ¢; do not change.?! Algorithm 3 describes the algorithm in greater detail

and appendix B.1 contains more details.

4 Numerical Results

In this section, we exploit the computational gains that derive from the robustness to multicollinear-
ity of the NN-based Expectations Algorithm to study the optimal maturity management problem
of section 3 with four maturities of 1, 5, 10, and 15 periods. Specifically, we are interested in the
effects on policy and allocations arising from the additional hedging opportunities with respect
to a portfolio with only a short and a long maturity. We first present the calibration and then our

numerical results.

4.1 Calibration

We calibrate the model following the strategy of Faraglia et al. (2019). Specifically, we use additively

separable utility in consumption and leisure

() C1*’7 (l) 11*’71
u(c) = , o(l) =

with v = 1.5 and #; = 1.8, respectively. We calibrate) such that households spend on average 2/3

of their time endowment on leisure in the steady state, which gives a value of 2.87.

2IThere is no need to check y;, which can be backed out analytically from the first order condition for c;.

22

Algorithm 3 NN-Based Expectations Algorithm applied to Optimal Maturity Management

=

Precondition: parameters from table 1; utility functions u(c) = =, uc(c) = ¢77, i = 0,
Bound(0) =
1: > Simulate AR(1) process
2 Qi1 & YPg +Pg &t €1yt

e

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:

22:
23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

> Create and train the NN using initial conditions
Net < feedforwardnet(Num. Neurons)

> Solve the model
while Bound(i) < Byax OR OutofBoundIter < NumOutofBound do
> Generate {ci}_q, {pe}_q, and {{b, 1} H
fort+— 1toT do
for r <— 1 to maxrep do
xguess < {C(r)gUESS/b(r)éuess/ e /b(r)gNuess}
{ce(r), ue(r), {bl 1 (r)}N,, residuals(r)} < Solve system 8 given ANN (Z;11), Bound (i) and Xgyess
end for
r* < min, residuals()
{eo e b H e {en(r) (), {bl 1 (r) }E
end for
if residuals(r*) > threshold then Restart from line 7 with a smaller bound
end if
> Train the NN using the new simulated sequences
Zi < {8t {{b —k k 0 N -y}
RHSU — ugpri fori=[1..N]
RHSé,t — Uppillepy; fori=[1..N]
RHS,, < ucpyiq fori=[1..N]
Net « train(Net, Z; 1, RHS;)
> Checking convergence and updating {bél d’t}f\i 1 and colq ¢
error; <— max(]{béld’t}fil —{iIN.D
error. <— max(|Coid s — Ct|)
if max(errory, error,) < € then Break
end if
{Oha, o < {01
Cold,t < Ct
Bound (i) <— Bound(i) + BoundStep
if Bound(i) > M then
Bound (i) + M
OutofBoundlIter < OutofBoundlter + 1
end if
i+—i+1
end while

23

We set to 0.96 and for the sake of comparison, we follow the calibration strategy for g;
from Faraglia et al. (2019). We assume that g; follows an AR(1) process ¢; = g + p¢Qt—1 + €4,
e ~ N(O, 0’;) with p, equal to 0.95. Then we look for the value of ¢ such that government
expenditure is on average equal to 25% of GDP. This gives a value of 0.0042. Lastly, we set the value
for og such that g; is always at least 15% and at most 35% of GDP in a simulated sample of ten
thousand periods, which gives a value of 0.0031. Note that such parameterization is also broadly
aligned with the estimates from the data.??

The government has four debt instruments at its disposal. We set maturities to 1, 5, 10, and
15 years and denote b, b°, b19, b1 as short, medium, and long and very long bonds, respectively.
In addition to debt limits on individual bonds, we introduce a total debt limit of +=100% of GDP
both in our benchmark model with only short and long bonds and in our calibration with four
bonds. A fixed limit on total debt allows us to make a fair comparison and isolate the effects of
the hedging benefits of the additional bond on the household’s welfare. Table 1 summarizes the

parameter values.

Parameter Value
Preferences Discount factor B 0.96
Risk aversion 0% 1.5
Labor disutility X 2.87
Leisure curvature Uil 1.8
Government Average g; He 0.0042
Volatility of g; og 0.0031
Autocorr. of g; Pg 0.95
Debt limits M, M, Miotal, Mgt £ 100% of GDP

Table 1: Calibrated parameters

Before proceeding, it is worth noting that we tested our methodology with the two-bond case.
Our results in a two-bond model confirms the findings of Angeletos (2002) and Faraglia et al. (2019),
where the optimal debt portfolio includes a negative short bond position and a positive long bond
position, as shown in table 2. Moreover, as also shown in table 2, the bond portfolio positions are

large and volatile as in Buera and Nicolini (2004).

22We obtain very similar estimates using the sum of government consumption and gross investment from the NIPA
tables.

24

4.2 Optimal Debt Management with Three and Four Bonds

Tables 2 and 3 summarize the equilibrium outstanding debt-to-GDP ratio for each maturity and
for each model with an increasing number of bonds. Moments are calculated given a sequence of

government expenditure shocks with persistence and volatility specified in table 1.

Model [E(0'/GDP) E(b°/GDP) E(b™/GDP) E(b®/GDP)

1 Bond 0.017 - - -

2 Bonds -0.03 - 0.343 -

3 Bonds -0.555 0.704 0.632 -

4 Bonds -0.63 0.884 0.908 -0.173
Model ¢(b'/GDP) ¢(b°/GDP) o(b'°/GDP) o(b®/GDP)
1 Bond 0.243 - - -

2 Bonds 0.1 - 0.122 -

3 Bonds 0.591 0.34 0.533 -

4 Bonds 0.218 0.266 0.27 0.374

Table 2: Selected Bond Moments: Means and Variances
Notes: The table shows the average outstanding debt for each maturity. Moreover, the table also reports the standard
deviations of each outstanding position.

Model p(gi,bf) p(grb7) p(g1,b°) p(gt b))
1Bond 0549 - - -

2Bonds 0.707 - -0.482 -

3Bonds 035 -0181 -0.302 -

4Bonds 0762 -0.094 0212 -0.22

Model p(b;,b7) p(bf,b°) p(b% b)) p(b° b)) p(b b)) p(b°,b°)
1Bond - - - - - -

2 Bonds - -0.796 - - - -
3Bonds 0944 -0985 0931 - - -
4Bonds 0458 -0565 0918 0047 -0.877 -0.82

Table 3: Selected Bond Moments: Correlations
Notes: The table shows the correlations between each maturity of outstanding debt and government expenditure.
Moreover, the table also reports the cross-correlations among the bonds.

As shown in tables 2 and 3, the optimal policy includes an active use of all available maturities.
Table 2 shows that the average position of each maturity is significantly different from zero and that
bond positions are volatile, suggesting their active use responding to expenditure shocks. Table 3
show the correlations of all the maturities with government expenditure and among themselves.
First, it shows the position of short maturity is positively correlated with expenditure shocks while
the other maturities are negatively correlated. Second, short maturity is negatively correlated with

all other maturities. These two together suggest that, in addition to holding a leveraged portfolio

25

on average, it is optimal to rebalance the portfolio toward shorter maturities. As shown in table 4,
the additional hedging benefits of the additional maturities are reflected in a higher average leisure
and a lower consumption volatility, while the economy sustains a lower average consumption.

Labor tax volatility and autocorrelation also decrease significantly, while the average level rises.

Model E(c¢;) o(In(cr)) E(ly) o(In(ly)) E(n) o(n(w)) p(n(w) In(t-1))

1Bond 0.252 0.029 0.666 0.006 0.247 0.121 0.971
2Bonds 0.250 0.029 0.668 0.004 0.255 0.106 0.929
3Bonds 0.248 0.028 0.670 0.005 0.27 0.10 0.914
4 Bonds 0.247 0.027 0.671 0.006 0.274 0.091 0.841

Table 4: Allocations and Policies

Notes: The table shows the effects of the optimal policy on consumption and leisure as the number of bonds increases.

Next, we inspect the economic mechanism of how hedging benefits provided by the additional
maturities affect household allocations and taxes. As known since Angeletos (2002), differences
in long and short bond prices provide a tool to hedge against shocks by borrowing in long
bonds and accumulating assets in the short term. Since long prices are more volatile than short
prices, when a negative shock hits, the value of government liabilities falls more than the value of
government assets, thus providing insurance against negative shocks. In addition to decreasing
the government’s liabilities, the differential response of long and short prices also affects the terms
of issuing new debt. Since long prices fall more than shorter ones, it becomes cheaper for the
planner to obtain funds by issuing shorter debt. This is why we observe portfolio rebalancing and
a negative correlation between the long and short bonds.

Table 5 shows how optimal debt management affects government finances as we increase the

number of debt instruments.

26

Description Moment 1Bond 2Bonds 3Bonds 4 Bonds

Corr. Debt/GDP and g; Y (Eyifb;, gt> 0.547 0.136 -0.079 -0.131
Corr. Net Financial Income and g p(¥;(pibl, | — pi~'bl), ¢) 0.186 0.405 0.416 0.511
Net Financial Income o 4 .
Corr. (constant price) and g+ (¥ (E(p})bj, 4 — E(pi~1)bi),g1) 0.078 0.11 -0.103 0.019
. . o Y Pibi+17p§71b;
Av. Net Financial Income (%) E i -0.142 -0.845 -2.213 -2.569
o w(1-1)
Av. Labor Tax Income (%) E (T) 247 25.5 27.0 27.4

Table 5: Government Income and Borrowing
Notes: The table shows selected moments from the models with one, two, three, and four maturities. The first row
shows the correlation between the outstanding debt/GDP ratio and expenditure shocks. Rows two and three show
the correlation between government financial income and expenditure shocks. The last two rows show the average
net financial income and the average labor tax income. Net Financial Income is defined as the inflow from issuing
new debt at the net of the cost of buying back the outstanding debt. Net Financial Income (constant price) is the
counterfactual and corresponds to Net Financial Income holding bond prices fixed at their average values.

To inspect how this rebalancing matters for the government’s budget, we decompose govern-
ment income into labor tax income and net financial income, which is the inflow from issuing new
bonds minus the outflow due to outstanding debt. Most importantly, as the number of maturities
increases, the correlation between total debt and government expenditures changes sign, as shown
in the first row of table 5.

In the one- and two-bond economy, the government borrows from the private sector to finance
expenditure shocks. In the three- and four-bond economy, the government reduces its total debt to
subsidize the private sector and smooth its consumption. At the same time, net financial income
becomes even more positively correlated with g; and allows for smoother labor taxes, despite a
falling total debt in bad times. The reduction of total debt together with rising financial income
is achieved precisely because the planner holds leveraged positions and responds to expenditure
shocks by substituting to short bonds.

As further evidence of this mechanism, we construct a counterfactual measure of net financial
income assuming that bond prices were fixed at their mean values. The counterfactual correlation is
reported in the third row of table 5. The low correlation here suggests that the co-movement between
net financial income and government expenditures is achieved by exploiting the differential
response of short, medium, and long prices. This indicates that if prices were constant, portfolio

rebalancing would have little effect on the cyclicality of financial income and the government’s

27

budget.

Looking at the averages in rows four and five, we see that as the number of maturities increases,
the government becomes a net payer to the private sector and collects a larger share of its income
in labor taxes. This happens because the increase in labor taxes outweights the decrease in average
labor supply. Although average household labor income falls, the household is compensated for

holding government debt.

5 Comparison with Alternative Methods

There are other simulation-based numerical methods designed to address the issue of multicollinear-
ity among state variables. In this section, we discuss and compare our method to the two most
prominent ones: the Condensed PEA (C. PEA) used in Faraglia et al. (2019) and the generalized
stochastic simulation algorithm (GSSA) described in Judd et al. (2011).

5.1 Relation to Condensed PEA

This method extracts orthogonal components from the information set. The method is similar
to the Principle Component Analysis (PCA), except that the number of factors does not have to
be chosen ex-ante. Algorithm 4 reports the pseudo-code of Condensed PEA and highlights with
colors the part of Condensed PEA that changes when the NN-based Expectations Algorithm (NN
EA) is implemented. In this section, we solve the model with a short one-period bond and a long
ten-period bond using both algorithms. The model is solved with individual bonds bounds M, M
set at +100%. As reported in table 6, the two algorithms reach a similar outcome, but the NN-based
Expectations Algorithm is significantly faster. The speed gains mainly come from the removal of
the external loop (lines 1, 13, 14, 15, 16, and 17 in Condensed PEA) as the neural network digests

the information set at once.

28

Algorithm 4 From Condensed PEA to NN-based EA

Precondition: initial state Xj, initial X¢! and X°U, sequence {gt}fzo, initial guess 17,%, dampening
O<w<1
1: while core set X“* converges do

2 while 7/, converges do

3 fort < 0to T do > Generate X = {X;}L

% ¢ fH(Pa(XES)

5: X1 < h(Xy, ¢, Cry)

6: end for

7 fort < 0to T do > Generate Y = {y;11}],

8 Yir1 < 8(Cr1, Xe1)

9: end for
10: fil, « argmin (Y — P,(X%;7})? > Regress to find new weights
11: ittt wfh+ (1—w) -7 > Update with dampening
12: end while
13 w « argmin X9t — o XCk > Update core set
14 XRes , xOut _ wa,k

15: A < argmin Y — P, (X%, 5l) — AXRes
16: XCOkH1 XCky A XRes
17: end while

On the one hand, eliminating the external loop (line 1) reduces the complexity of the algorithm
significantly, since Condensed PEA requires testing an unknown number of combinations of core
regressors. On the other hand, our algorithm requires substituting OLS (lines 10 and 11) with a
neural network training algorithm, which has higher complexity. Note that the computation time
of one entire simulation from 1 to T (lines 3-9) takes significantly more time under Condensed
PEA.? In total, the Condensed PEA needed to cycle 4 times before the core set X“* converged.

This means that Condensed PEA required approximately four times more iterations than NN EA.

Method Time Forecast Error E(¢;) E(l;) E(w) o(In(cy)) o(n(ly)) o(n(t)) p(St, Si-1)
C.PEA 203810s 0.373 0.256 0.663 0.219 0.024 0.007 0.116 0.798
NN EA 23744s 0.391 0.256 0.664 0.222 0.024 0.007 0.123 0.869

Table 6: Moments Condensed PEA versus NN EA

Notes: The table shows the equilibrium moments calculated with Condensed PEA and the NN Expectations Algorithm
(NN EA). The forecast error is calculated as .71 Y-F | [yer — E(ye)|, where y,,; here is used to indicate the realized
value correspondent to each expectation IE () predicted by either Condensed PEA or NN EA. Bond bounds are set
as M, M at £100%. We follow Faraglia et al. (2019) and calculate S = E}%}B}U as the ratio between the market value of
short-term debt b} and the market value of the total outstanding debt b} + b}°. The computation times are obtained
using MATLAB 2023a and a computer with an Intel(R) Core(TM) i7-8750H CPU (9M Cache, up to 4.10 GHz) with
RAM 16 GB.

ZLines 3-9 of algorithm 4 take on average 34s for Condensed PEA, whereas the neural network training phase took
around 15s. Lines 13-16 of algorithm 4 take on average 0.003s for Condensed PEA, whereas the neural network training
phase took around 0.21s.

29

Note that, as the number of maturities increases, the Condensed PEA requires testing a much
higher number of combinations of core regressors. In this sense, NN EA is a more scalable approach.
On a related note, in appendix B.2, we also present a comparison between Condensed PEA and
our algorithm based on time complexity. Our calculations show that NN EA has a lower time
complexity than Condensed PEA, if Condensed PEA requires more than one loop on the core set of

state variables to converge.

5.2 Relation to GSSA

Next, we compare our methodology to the GSSA method proposed by Judd et al. (2011). GSSA
resolves the multicollinearity problem using standard econometric techniques (i.e., single value
decomposition, principal components, and ridge regression), combined with stochastic simulation.
We solve the government debt management problem with one maturity using GSSA.?* In particular,
we use ridge regression since, as noted in Judd et al. (2011), it works best under severe multi-
collinearity.> In our application, ridge regression combined with stochastic simulation works when
bond constraints are loose, whereas when the constraints are tight, ridge regression coefficients
fail to converge. As we illustrate in details in appendix B.3, the reason lies in the fact that ridge
regression requires choosing penalty parameters. This choice presents non-trivial challenges. In
our application, the simulated data changes in each iteration since we are solving the model with
an iterative procedure. In principle, this should require updating the penalty parameters in each
iteration. However, in our experience, changing penalty parameters at each iteration also creates
instability as the simulated data is endogenous to the penalty choice in the previous iterations. For
this reason, we fix the penalty parameters (see appendix B.3 for more details on how we choose the
penalty parameters) during the whole procedure and, since the simulated debt sequence tends to
change significantly with each iteration when the bond constraints are tight, the algorithm fails
to converge. Recall that, as explained in section 3.3, our algorithm initially restricts the solution
artificially within tight bounds on all debt instruments, and refines the solution gradually while it
opens the bounds slowly. To conclude, the challenges in choosing (or fixing) the penalty parameters,
combined with the frequent changes in debt sequences in each iteration induced by initially tight
bounds, render ridge regression with stochastic simulation hard to scale in our application. Further

details can be found in appendix B.3.

24We also attempted to solve the model with two maturities but we were not successful.
25Qur application features a very ill-conditioned matrix XT X, especially when the number of maturities increases.

30

6 Conclusion

In this paper, we exploit the computational gains that derive from the robustness to multicollinearity
of neural networks to extend the optimal debt management problem studied by Faraglia et al.
(2019) to four maturities. The hedging benefits provided by the additional maturities allow
the government to respond to positive expenditure shocks by raising financial income without
increasing the total outstanding debt. We show that, through this mechanism, the government uses
the additional maturities to effectively subsidize the private sector in recessions, resulting in more

leisure and less volatile labor taxes.

31

References

Aiyagari, S. Rao, Albert Marcet, Thomas J. Sargent, and Juha Sappala. 2002. “Optimal Taxation
without State-Contingent Debt.” Journal of Political Economy, 110(6): 1220-1254.

Angeletos, George-Marios. 2002. “Fiscal Policy with Noncontingent Debt and the Optimal Maturity
Structure.” Quarterly Journal of Economics, 117(3): 1105-1131.

Azinovic, Marlon, Luca Gaegauf, and Simon Scheidegger. 2021. “Deep Equilibrium Nets.” Work-
ing Paper.

Bellman, Richard Ernest. 1961. “Adaptive control processes: a guided tour.” Princeton University

Press.

Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas J. Sargent. 2017a. “Fiscal Policy
and Debt Management with Incomplete Markets.” The Quarterly Journal of Economics, 132: 617-663.

Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas Sargent. 2017b. “The Optimal
Maturity of Government Debt.” Working Paper.

Bigio, Saki, Galo Nuifio, and Juan Passadore. 2022. “Debt-Maturity Management with Liquidity
Costs.” Working Paper.

Buera, Francisco, and Juan Pablo Nicolini. 2004. “Optimal maturity of government debt without

state contingent bonds.” Journal of Monetary Economics, 51: 531-554.

Cybenko, G. 1988. “Approximation by superpositions of a sigmoidal function.” Mathematics of

Control, Signals and Systems volume 2, pages 303-314.

den Haan, Wouter, and Albert Marcet. 1990. “Solving the Stochastic Growth Model by Parameter-

izing Expectations.” Journal of Business and Economic Statistics, 8(1): 31-34.
Duarte, Victor. 2018. “Machine Learning for Continuous-Time Finance.” Working Paper.

Duffy, John, and Paul D. McNelis. 2001. “Approximating and simulating the stochastic growth
model: Parameterized expectations, neural networks, and the genetic algorithm.” Journal of

Economic Dynamics and Control, 25(9): 1273-1303.

32

Faraglia, Elisa, Albert Marcet, Rigas Oikonomou, and Andrew Scott. 2014. “Optimal Fiscal Policy
Problems Under Complete and Incomplete Financial Markets: A Numerical Toolkit.” Working
Paper.

Faraglia, Elisa, Albert Marcet, Rigas Oikonomou, and Andrew Scott. 2019. “Government Debt
Management: the Long and the Short of It.” Review of Economic Studies, 86: 2554-2604.

Ferndndez-Villaverde, Jests, Samuel Hurtado, and Galo Nuiio. 2020. “Financial Frictions and the

Wealth Distribution.” Working Paper.

Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the difficulty of training deep feedfor-
ward neural networks.” Vol. 9 of Proceedings of Machine Learning Research, 249-256. Chia Laguna
Resort, Sardinia, Italy:PMLR.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http:

//www.deeplearningbook.org.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Vol. Second Edition, Springer.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer feedforward networks

are universal approximators.” Neural Networks Volume 2, Issue 5, 1989, Pages 359-366.

Ioffe, Sergey, and Christian Szegedy. 2015. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” CoRR, abs/1502.03167.

Judd, Kenneth, Lilia Maliar, and Serguei Maliar. 2011. “Numerically stable and accurate stochastic
simulation approaches for solving dynamic economic models.” Quantitative Economics, 2, 173-210,

2:173-210.

Karantounias, Anastasios G. 2018. “Optimal fiscal policy with recursive preferences.” Review of

Economic Studies, 85: 2283-2317.

Krusell, Per, and Anthony A Jr. Smith. 1998. “Income and Wealth Heterogeneity in the Macroecon-
omy.” Journal of Political Economy, 106(5).

Lustig, Hanno, Christopher Sleet, and Sevin Yeltekin. 2008. “Fiscal hedging with nominal assets.”
Journal of Monetary Economics, 55: 710-727.

33

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Maliar, Lilia, and Serguei Maliar. 2003. “Parameterized Expectations Algorithm and the Moving

Bounds.” Journal of Business and Economic Statistics, 21(1): 88-92.

Maliar, Lilia, and Serguei Maliar. 2022. “Deep learning classification: Modeling discrete labor

choice.” Journal of Economic Dynamics and Control, 135: 104295.

Maliar, Lilia, Serguei Maliar, and Pablo Winant. 2021. “Deep learning for solving dynamic

economic models.” Journal of Monetary Economics, 122: 76-101.
Marcet, Albert, and Ramon Marimon. 2019. “Recursive Contracts.” Econometrica,, 87: 1589-1631.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning representations
by back-propagating errors.” Nature 323, 533-536.

Scheidegger, Simon, and Ilias Bilionis. 2019. “Machine Learning for High-Dimensional Dynamic

Stochastic Economies.” Journal of Computational Science, 33: 68-82.

Swanson, Eric T. 2012. “Risk Aversion and the Labor Margin in Dynamic Equilibrium Models.”
American Economic Review, 102(4): 1663-1691.

Swanson, Eric T., and Glenn Rudebusch. 2012. “The Bond Premium in a DSGE Model with

Long-Run Real and Nominal Risk.” American Economic Journal: Macroeconomics, 4: 105-144.

Widrow, B., and Jr. Hoff, M. E. 1960. “Learning representations by back-propagating errors.”
Adaptive switching circuits, IRE WESCON Convention Record, Part 4, New York: IRE, pp. 96-104.

34

ONLINE APPENDIX
A Machine Learning Projection Method for Macro-Finance Models

VYTAUTAS VALAITIS AND ALESSANDRO T. VILLA

A Optimal Fiscal Policy with Epstein-Zin Preferences

This appendix presents the general model with N bonds and Epstein-Zin preferences, describes the
computation algorithm, and presents the equilibrium dynamics of the Epstein-Zin model with two

bonds.

The Household’s Problem Households have Epstein-Zin preferences where the instantaneous
utility comes from consumption (c;) and leisure (/;). The parameter p controls the substitutability in
time and the parameter <y controls the attitude towards risk.?® When p = 1, preferences collapse to

CRRA, where consumption and leisure are additively separable. Preferences are

1-p 1

V= (L= B)1 + BBV

The time endowment is equal to 1; therefore, hours worked are h; = 1 — I;. The household cash-on-
hand consists of (i) the after-tax labor income and (ii) the current bond holdings. This can be either

consumed or spent to purchase new bonds. The budget constraint (BC) is
ct + pibir = b+ (1 — 1)y
Defining W; = by and Ry11 = Wi 1/ pibir1 = 1/ py, the BC can be rewritten as

ct +piWis1 = We + (1 — 1)y

= Wit1 = Rea(Wr —cr + (1 — 1) hy).

26When the instantaneous utility includes leisure, the relative risk aversion is not y but 1 — (1 —) (1 — p), see Swanson
(2012) or Swanson and Rudebusch (2012) for a detailed explanation.

35

Given the redefinition of the BC, the household’s problem can be rewritten as

1*’)]1]7,

Vi(Wp) = max[(1 = B)U(ct, 1 =)' =0 + B(E; Vi1 (Wes1)'™7)

cthy

Wit = Rt (W —cr + (1 — 1) y).

Define the certainty equivalent (CE) as R¢(Vi11) = (E; th+17)% The optimality condition for

consumption (FOC,) is

v/ (1= B)(1 = p)U; "Ues — B(1L = p) (EV.) VB [V TR Vi]) = 0

— (1-p)U, U = PR} PE, |V, [t+1Rt+1VWt+1}
The optimality condition for labor supply (FOCp,) is

v (—(1=B) (= p)U, Uy + B~ p) BV) T [V T(1 =) Resa Vv |) = 0

= (1-B)U, U, = (1-1u)pR! "E, [VtHRtHVW t+1}
The envelope condition is
Vi = VEBR] PEV, TRia Viv 1.

Combine FOC, with FOCj, to get

U
uc t

=1—1.
Combine FOC, with the envelope condition to get

Vive = VE(1 = B)U; Uy = Viner = Vi (1 - B)U S Ucssn,
which implies

(1= B)U; *Ues = BRIV, [V, RV (1= BUL Uepn]

36

Plugging this back in the FOC,, rearranging and simplifying leads to the following inter-temporal

Euler equation

1= BE,

Ui 1) P Ue i R
t+1

M;(Vi1) < U, U

where M;(Vi41) = (%)pﬂ. The bond’s price p; is the expected value of the stochastic

discount factor

pr = BE;

U, U
Mi(vi) (1) " e

This problem can be generalized to N maturities in a similar fashion to section 3.2. This yields

one Euler equation for each maturity i = 1,--- , N that reads:

Upsi\ P Ugpyi
— BE Viei) (=2 '
ﬁ t Mt(f+l)(ut) Uc,t

Ramsey Problem

The Ramsey problem consists of finding {c;, {b; 41 }f\i 1 Mt i} in order to maximize the house-
hold’s welfare taking household intra- and inter-temporal first order conditions as constraints.

Hence, the Lagrangian of the problem is

) N o
L= VO + IEO Z 5t{ﬂt (u;puc,tst + Z]Etﬁlb;-y-]Mt(Vt—&-JutJﬂuc i
t=0 i=1

N
Y EB UL Ui My (Vi)-i-ztfm (BY —b;,4) +Z§Lt 41—)}-
= i=1

In addition, the Ramsey planner needs to respect the recursivity constraint for V;

Vi=[(1-p)U(er1—cr—g0)' " + BBV, Ty

Optimality Conditions

In order to calculate the first order condition with respect to ¢, it is necessary to calculate an
expression for the derivative of welfare Vj with respect to c;. Note that V{ contains all the consump-

tion path from 0 throughout co, which we derive in subsection A. Knowing 5 a‘(/o 3 the first order

37

condition with respect to consumption is*’

_, ou ou, U, as
Y Y t c,t t
VO (1 - IB)XO,tut agct (gt) + Ut <actt(gt) a u UC t)

ou, PUcy Y v o Uy
E)ct(g ZZ: u—iMi—i(V) = pi—inMi—iza (Vi) by + A/ VP (1= B, ci(g) =0,

where A/ is the time-t Lagrange multiplier associated with the recursive constraint and X}, ;, =
Ht2 g My, 4k—1 (Vi k) with & 4, = 1,VE, < t. Note that & admits a recursive representation. 28
The first order condition with respect to b}, ; yields the following inter-temporal expression for the

promise keeping Lagrange multiplier y

-1
Ui = []EtMt(‘/if+l>ut+luc t+i] []Etllt+1Mt+1(Vt+z)ut+luc tti %l —%l .
The first order condition with respect to V; is
B Y. (g8 (g b Uy P2t VE)
=~ t—i t—i+1% et Yt th(g>

_ i i _; . —pOM;_i1(Vh)

i+1 41,0\ pi—1 i4+1\1,i t—i+1\ Vit
B Z;”(gt B i (8hlg T b el pW—

=T _
A B (gh18%) + B (g1 8P AL A BVE Rea (Vi) P M1 (V)i m(gilg' ™) =0,

which, after rearranging, yields the following recursion for)\Y 2

N oM;_i(Vy) OM;_iv1(Vi)\ - Vier\?
A=Y <P‘tith(:gt) - ,utfz#l;avtl(—;t) > by i UesUy P+ A4 <Vt> M 1(Wh).

i=1
The remaining first order condition with respect to y just gives back the inter-temporal government

implementability constraint.

27With ag@) = ViBH(1 - B)Xom(gt|eO)U, Pac%é)
tty = ItcT ttk—1(Vi+k) = Mp_1(Vt, ! t+k=1\VH 4k -1V Th/h =]
B Xty = T Myt (Vi) = Mo (Vi) TS Mgy (Vi) = Mg (V) &

PWhere: aMéiv’(V’) (p—’y)M’%th) [1—Mt7i(Vt)” T7e(gelgt 1)]-

38

1. Derivation of 0V;/dc;

Ifj <O
oVi/dcj = 0.
Ifj=0:
TCt — (1 :B)V U act
Ifj=1:
aV; Y—p _7%
Yo (@) = VEBRi(Vi1)" P 7(ge4118") Vi (g0
oU; 1
= VIBR:(Viy1)" P e(grilg) Vi, t+1 <(ﬁ)vtilutflac(t;tﬂ))
_ ol
T N t P $
= VEB(1 = B)M (V1) (8118) U, At (ght1)’
Ifj =2
Vi B —’yth—H
Sora () VEBR (Vi)™ (8|8 Vit 5 —
B oU;4n
= VEBRi(Vi1)" P r(gealgh) VL] (? 1 B(1 = B)Ris1 (Vie2) P rt(gislg) VEL UL ac t+2>
— v HM v, ﬁﬂ | t+k—1)u*9&
trk—1(Vis) L (8r+xlg 293¢0 (g 2)
For a genericj > 0:
th 0 aj it TP auH"]
BT — B) Xy im(g QU e
3ers () VEB (1= B)Xpryjm(g]g7) Hidc ()

39

2. Derivation of Wg;‘}t(v’)

p—y—1
OMi1(Vy) B M1 (Vy) v _ ot & t-1
= TR [Ree () - UM a(gls)
Ry —1(Vp)
v
My (V)T
_ - -
= (p—) [Rea (V) = VM (W) 7 m(gelg ™)

2
M1 (V) P=7

p—y+1
M1 (V) o7 —1 1 _
= (M T, s ()5 Vi ViAW) P (g)]
t
o1t
M1 (V) e —1 =1 _
= (o= NPT (M1 ()7 - Mo ()P (gl)]

= (-5 [1- MW a(glg)]

Algorithm to Solve the Model with Epstein-Zin Preferences

Here we describe an algorithm to solve the model with Epstein-Zin preferences. Generally, it is very
similar to the one used to solve the model with CRRA preferences, with the exception that there
are additional state variables and additional terms that the neural network has to approximate. At
every instant f, the information set is 7 = {g:, {{0} }~ o'}, {me—i 1y {AV }N ,}. Consider

projections of R;_;(V;), IEtMt<W+i)u;_Pjuc,t+i/ Epry iMir (Vt+z’)ut_fiuc,t+i and

E M (Vigio1)U,

Lio1Ueivi—1 on Z;. We model these relationships using one single-layer artificial

neural network AN N (Z;). For example, with two bonds we would have 4N + 1 inputs and 8

outputs.?” In particular, use the following notations for each output:

ANNY =Ry (V) fori={1,N—1,N},

ANNb = E;My (Vi) U, Py fori = {1,N},
ANNG = Bty iMia (Vi) U, fUcy i fori = {1,N},
ANNG = BeMi(Viri)U, [} Ugpsion fori = {N}.

Given starting values y;_1 = AV, = 0 and initial weights for ANN/, simulate a sequence of {c;},

{AYY, {p} as follows:

300ne with maturity 1 and the other with maturity N.

40

1. Impose the Maliar moving bounds on all debts instruments, see Maliar and Maliar (2003).
These bounds are particularly important and need to be tight and open slowly, since the
neural network at the beginning can only make accurate predictions around zero debt - that
is our initialization point. Proper penalty functions are used instead of the ¢ terms to avoid

out of bound solutions, see Faraglia et al. (2014) for more details.

2. Use forward-states on the following i equations

. -1 .
Vi = [BANN(Zn)] | EANN(Tin) +

G

Clil,t _ Ci,t] ‘

3. Find A, yt, ¢y and {b}_;}N, that solve the following system of equations:

Vi1 Vi

i A=)

i=1

al (OM,;_i(Vh) OM;_ir1(Vh)

—o AU ou, U, dsp
.. 01 0 t t ot 9ot 11—
11. VO (1 ‘B)Xo,tut ac; (gt) + ut (ac, (gt) St + s Ut uc,t) +

au;puct N vV o= v, p= ‘ . -
—t = i — i | ———— b AV P -pu
dcr(gh) ; P\ NN (T H AN (Z) it A TP T

i=1

iii. Y BANNG(Zi1) = silly PUs + Y bt ANNY (Zi41),
j= i=1

, -1
iv. Vi: o= {]EtANNll(It-&-l)}

ErANNY(Ty41) + (fu,t a 6“1 '

B B
where
Vi = -
aMt*i(Vt) (ANNi) v,
OM—i(Vt)) _ (_ NNAVMY | N
oVt o= Vi AN N} fo(8tlgt—i)
Vi= (1= plUlen 1 == 0!+ PANN (i) 0],
and
ol
?tt = uc,t - ul,t'

41

OMV—i\Vt) 9V i1 (VE) i - \%4
Hi—i th(gt) Hi—i+1 th(gt)) btferluC,tut +)\t—l (Vt) (.ANN% (It+1)>

:0,

Note that fg,(g¢|g¢—1) is the conditional probability density of the exogenous g process.

4. Use the simulated sequence to train the AN A and re-start from point 1 till convergence of

the predicted sequence over the realized one.

Numerical Results with Two Bonds and Epstein-Zin Preferences

Bhandari et al. (2017b) and Karantounias (2018) convincingly demonstrate that implications for
optimal portfolios changes once the model contains preferences that match the asset prices. In this
section, we explore the implications for optimal debt management once we change preferences
to Epstein-Zin and add a shock that is orthogonal to the government expenditure process. In
particular, we add an endowment shock z;, such that [; = z; — B3t Figure 4 shows that in this
setting the allocation shares are around equal among different maturities, and little portfolio re-
balancing happens in response to government shocks. The intuition is that the presence of TFP
shocks, which are orthogonal to government expenditure shocks, makes it risky to hold a highly
leveraged position. This risk is magnified by Epstein-Zin preferences. Bhandari et al. (2017b) solve
a similar model using a perturbation method around the current level of government debt. Our

results using our methodology are consistent with their intuition.

0.092 T T T T T T T 1.025 8

0.09 -

0.088

X 0.086

Zt
% GDP
N

0.995

0.084
10.99

10.985
0.082

10.98

0.08 : : : : : . : 0.975 -4

Time Time

Figure 4: Simulated series with 2 bonds and Epstein-Zin preferences
Notes: The figure shows the equilibrium dynamics of the two-bond model with Epstein-Zin preferences. The left
panel plots a sequence of exogenous shocks. Solid black - government expenditure, dashed black - productivity. The
right panel plots the sequence of bonds. Solid blue - long bond with N=10. Dashed purple line - short bond with
N=1.

3y is independent of g; and follows an AR(1) process z; = iz + p2z¢_1 + €; with p = 0.9, p, = 0.1, € ~ N(0,0.0001).

42

Parameter Value

Discount factor B = 0.96
RRA vy=15
1/EIS p=16
Leisure utility parameter n=18
AR(1) parameter in g; ¢1 = 0.95
constant in AR(1) process of in g; c = 0.00416
Variance of the disturbances to g; o2 = 0.00001
AR(1) parameter in z; ¢, =0.1
constant in AR(1) process of in z; c=09
Variance of the disturbances to z; oZ = 0.0001

MN M5 = 100% of GDP

Borrowing limits MN, M = —100% of GDP

Table 7: Parameter Values used in the model with Epstein-Zin preferences

B Implementation Details

This appendix includes three subsections: (i) additional algorithm details, (ii) an in-depth discussion

about the relationship with GSSA and (iii) additional figures.

B.1 Algorithm Details

In this section we describe the practical details of the algorithm used to solve the model described
in section 3.3. For explanation purposes, and as an example, we use the case with three bonds. In

particular, we use three maturities S =1, M =5, and L = 10.

Lagrange multipliers The system in step 2 contains multiple constraints, which poses a significant
computational challenge. Ideally one would numerically solve the unconstrained model and then
verify that the constraints do not bind and if, for example, MN binds, set bﬁl = MV and find the
associated values for consumption and leisure. In a multiple-bond model this is challenging because
after setting b, ; = MY, one needs to check if the other constraints do not bind in the recomputed
solution and, if they do, enforce them and recalculate the solution again and so on and on. To
overcome this challenge we approximate Lagrange multipliers with the following function: CiL,t =
p(M' — biy1) +log(1+ (M —bi,4))if b,y < M'and gzl,t = (b, — M) +1og(1+¢(bj,, — M)
if b, > M', where ¢ controls the relative importance of the constraint. In our implementation
we set ¢ = 90. We also find that including these multipliers in the training set allows for different

bond dynamics close and away from the constraints and improves prediction accuracy. As a result,

43

in our implementation

T = {ge A6 i WM bt izor {meidioy 8 20 bimnu HUEM S e u HE b0 bimnu S i u)

With S =1, M = 5, and L = 10 the state space includes 61 variables.

Forward-States PEA When the model contains more than one maturity, y; is over-identified. This
is because optimality conditions for every maturity identify i, as the information set I; contains

variables that are pre-determined at time t.

gTotal gTotal

Vi = ANNYT) T ANNG(T) + =5 égf i

©)

We tackle this problem by using a Forward States PEA, introduced in Faraglia et al. (2019).
It uses the current values of the state variables I;;; combined with the law of iterated expec-
tations. This is done in two steps. First, we replace the ANN'(Z;) terms in the optimality
conditions with E; AN N'(Z;,1) and, instead of approximating E; (1. (c;;)), Et (1c(cr4i—1)) and
E¢(uc(crrites1)), we use the information set Z; 1 to approximate E; 1 (uc(ct4i)), Ery1(uc(cri-1))
and E;i1(uc(cryipr+1)) fori = S, M, L. Then, we use Gaussian quadrature to calculate the condi-

tional expectation of the neural network evaluated at Z;, .

Neural Network Initialization In order to initialize the neural network weights, we need to make

a guess for bond sequences. We make an educated guess that bt 1= 8t/2—TE(g:/2); b, +1 = —bf
and bf‘il = /4:/10 — E(g:/10). Given these sequences, we use the government budget constraint

and the first order condition for ¢; to find the sequence for ;. Given the guess for bonds, we can
calculate the initial multipliers 52»' iu/t, {f’ttal, and Cr{{f’fﬂ. We calculate them setting the initial bond
constraints equal to M, M = +.005. We then use these sequences to initialize the neural network.
Generally, the initial guess can be any real sequences as long as it is not constant. Nevertheless,

having a good guess helps the algorithm to converge faster.

Stochastic Simulation We run the stochastic simulation from the starting point where by =
bM = bN = 0 and py = E(u). To solve the system of first order conditions at every period t of
the simulation, we use the Levenberg-Marquardt algorithm and stop the solver when the first

order condition errors are less than 1012, We set T=1000 and drop the first 150 periods in training

44

the neural network. The algorithm converges when the sequences for bonds and neural network

weights do not change between two consecutive stochastic simulations.

Solving the System At every period t of the stochastic simulation we need to solve the system
of first order conditions to get values for ¢, bf, ;, bﬁl, and b7 ',1- We solve it using the Levenberg-
Marquardt method. Since this is a local solver, there is no guarantee that the system is solved given
a particular initial guess. In our implementation we attempt to solve the system for at most maxrep
number of different starting points. If the solution errors are below our specified threshold, the
algorithm proceeds with the solution and moves to the next period. If the solution errors are not
below our specified threshold, we pick the solution with the lowest error. In practice we use 1071

as the solution criteria and set maxrep to 50 and verify that solution errors are below it for every t in

the stochastic simulation.

Neural Network Hyperparameters We set most of the hyperparameters to standard values
used in the literature. We use one hidden layer to leverage the trade-off between approximation
accuracy and training time. According to the universal approximation theorem, single hidden layer
networks are able to approximate every continuous bounded function with an arbitrarily small
error Cybenko (1988) and have smaller training times than multiple hidden layer networks. We
then choose the number of neurons according to procedure described in section 2.3. We train the

network using gradient descent with an adaptive learning rate. Table 8 summarizes the remaining

hyperparameters.
Parameter Value
Activation function Hyperbolic tangent sigmoid
Training algorithm Gradient descent with an adaptive learn-
ing rate backpropagation
Number of Hidden Layers 1
Number of Neurons 10
Learning Rate 0.0001
Learning Increase Factor 1.01
Learning Decrease Factor 0.9
Maximum Number of Epochs 1000
Performance Goal 0
Maximum Validation Checks 6
Maximum Performance Increase 1.04

Table 8: NN hyperparameters

Notes: The table summarizes the hyperparameters of the neural network used to solve the model in section 4.

45

B.2 Relation to Condensed PEA

Recall that S also corresponds to the number of neurons in the input layer, M is the number of
neurons in the hidden layer, E is the number of expectations to approximate (which also corresponds

to the number of neurons in the output layer), and T is the number of training examples.

Time Complexity of Condensed PEA In a least squares regression, the matrix multiplication
(XTX) dominates asymptotically the Cholesky factorization of XT X.3> Hence, the time complexity
to approximate E expectations terms with OLS is O(E - S? - T). In the condensed PEA, this operation
is repeated for an unknown number of iterations ncppa. We estimate the time complexity of the
Condensed PEA as

O(ncpea - Mntemaltoop * (K(E, S, T) + E-S*- T)),

where x(E, S, T) indicates the time complexity to compute lines 3-9 and NinternalLoop 18 the un-

bounded number of iterations required for model convergence (while-loop in line 2).

Time Complexity of NN-based Expectations algorithm The time complexity of a single iteration
of back-propagation to train a neural network that has 3 layers (with S, M, and E nodes) is
O(T-(S-M+ M- E)). Assuming there are more neurons in the hidden layer than the number
of expectations to approximate (M > E) and nyy is the number of epochs (which is in principle
unbounded), we estimate the time complexity to train a neural network as O(nyny - T - S - M). We

estimate the time complexity of the NN-based Expectations algorithm as
O (1nternalLoop * (K(E, S, T) + nnn - T - S - M)).
Given our estimates, our algorithm has a better time complexity when??
MnternalLoop * (K(E, S, T) + 1N - TS - M) < cpga - Mntemalroop * (K(E, S, T) + E - 8% - T).

After rearranging, we get a simplified expression

nnn - T-S- M < (ncpga —1) - (E,S,T) +ncpga - E-S*- T. (10)
N—_———
NN training CPEA regression

32We assume that the number of features (state variables) is smaller than the number of samples. Thatis, T > S.
3BWe assume that NnternalLoop @0d (E, S, T) are the same in both methods.

46

The left hand side captures the time complexity of training the neural network. The right
hand side contains the term that captures the time complexity of the regressions involved in the
Condensed PEA and an additional term (ncpea — 1) - k(E, S, T) that captures the difference between
the complexity of the stochastic simulation as computed with Condensed PEA and NN-based
Expectations algorithm. While «(E, S, T) is unknown, we can still compare the nyy - T - S - M and
nepea - E - S% - T terms, which further reduces to comparing nyy - M with ncpga - E- S. In our
application S = 27, E = 8, M = 10, and nyny = 20 on average. Given these numbers, the two
algorithms have comparable complexity when ncppa = 1.3* When ncppg > 1, the inequality in 10

clearly holds since (ncpga — 1) - x(E, S, T) > 0.

B.3 Relation to GSSA

Judd et al. (2011) propose a related method called generalized stochastic simulation algorithm
(GSSA) to deliver high accuracy predictions as well as resolving the multicollinearity problem.
Judd et al. (2011) resolve the multicollinearity problem using standard econometric techniques,
such as single value decomposition (SVD), principal components or ridge regression. At the same
time, high accuracy is achieved by approximating the policy functions and integrating them using
Gauss-Hermite quadrature, instead of approximating the whole expectation terms in the optimality
conditions. While the GSSA method has multiple advantages and has been successfully applied in
different contexts, we find that its application to the Ramsey problem analyzed in this paper poses
challenges. Judd et al. (2011) propose a related method called generalized stochastic simulation
algorithm (GSSA) to deliver high accuracy predictions as well as resolving the multicollinearity
problem. Judd et al. (2011) resolve the multicollinearity problem using standard econometric
techniques, such as single value decomposition (SVD), principal components or ridge regression.
At the same time, high accuracy is achieved by approximating the policy functions and integrating
them using Gauss-Hermite quadrature, instead of approximating the whole expectation terms
in the optimality conditions. While the GSSA method has multiple advantages and has been
successfully applied in different contexts, we find that its application to the Ramsey problem
analyzed in this paper poses challenges.

First, in this application it is particularly challenging to approximate the policy functions

directly, because the expectations are over N periods ahead. In the context of the model presented

34Note that when ncppq = 1, the Condensed PEA is essentially a standard PEA algorithm. It is possible that the
Condensed PEA converges in one iteration but that requires a good guess of the initial set of core state variables, which
needs to be found through trial and error.

47

in section 2 of this paper, the evaluation of E[u’(c;41)] requires knowing K>, which is a function
of K;;1, which itself is a function of K; and z;, Ki11 = ¢(Ky,z¢). Thatis, ¢;11 = zip1¢(Ke, 2¢)* +
(1 =906)p(Ki,zt) — ¢p(¢(Kt, z¢),z1+1). When the expectation is N periods ahead, the evaluation of
E[u' (ct+n)] using the GSSA approach would require iterating on the approximated policy functions
and the budget constraint N times to have the value for K; n+1, which would result in an imprecise
evaluation of the expectations and lower stability of the algorithm compared to an application
where the forecast is one period ahead.

Second, methods such as ridge regression impose a penalty on the size of the coefficients,
providing stability but causing them to be downward biased. The choice of this penalty parameter
is the source of instability. It is particularly hard to choose the penalty parameter in the context of
solving the model, since the regression is performed on simulated data which are not fixed and not
exogenous from the choice of the penalty. Simulated data depend on the coefficients and penalties
obtained in the previous iteration of the algorithm. Typically the choice of penalty parameter
requires adding an additional loop and solving the model with multiple values. However, it is not
obvious which penalty parameter is optimal because the optimal penalty is different at every step
of the PEA iteration as the Maliar bounds become increasingly open.

In order to compare our method with GSSA and other standard econometric techniques, in this
section we solve the one-bond model from section 3, with short-term debt N = 1. We solve it with
standard PEA, except that we use ridge regression. Hence, we do not use Montecarlo integration as
in GSSA because that would require to integrate N-periods ahead. Instead, standard PEA does not
require to perform any integration since it approximates the expectation terms directly.> In order
to pick the penalty parameter we use a cross-validation approach, where we change the penalty
dynamically at each step of the fixed point iteration in the regression stage. We select the penalty
parameter that minimizes the mean squared prediction error between predicted and simulated

sequences.’® Equation 11 illustrates the penalty selection procedure.

min||Y — XB||3 s.t

K
] . ,) (11)
B= arg;mnHY — XBll5 +«[IBll2

%5 Note that when we use more than one maturity, we use Forward-States PEA and perform one step of integration
using Gaussian quadrature as explained in section 3.3.

36Similarly, Judd et al. (2011) choose the smallest penalty that ensures numerical stability of the fixed point iteration,
which also provides a high accuracy solution.

48

We use ridge regression as opposed to SVD or a principal component analysis for two reasons.
First, ridge regression is supposed to work better than SVD when the multicollinearity is severe, as
is the case in the model of section 4. Second, we do not use principal component analysis, since the
Condensed PEA effectively does the same extraction of orthogonal components, just iteratively.
From our numerical experiments, we discover that PEA combined with ridge regression con-
verges only under specific conditions. Note that throughout the paper we have been using debt
limits. This effectively introduces an occasionally binding constraint, which makes the multi-
collinearity problem even more severe if the debt sequence visits the constrained region frequently.
Besides, the algorithm requires using Maliar bounds, which potentially cause even more instability
since the borrowing constraint changes as the bounds progressively open. We find this to be
crucially important. For illustration we consider the one-bond model with tight (M, M at £100%
of GDP) and loose (M, M at +200%) borrowing constraints. At every iteration we compute the
maximum difference between the ridge regression coefficients at the current and the previous
iteration. When the borrowing constraint is loose, the regression coefficients stabilize after the
Maliar bounds are wide enough and the borrowing constraint stops binding. In contrast, in the
specification with tight constraints, the constraint binds more often, requiring the use of a large

penalty parameter, which prevents the algorithm from converging.

Tight Constraint Loose Constraint
E(AB) 3.81 .08
% constraint binds 38.2% 0

Table 9: Solution using ridge regression
Notes: Table shows selected statistics from model specifications with tight and loose borrowing constraints when
solving the model using PEA with Ridge regression. Tight refers to the case when M, M at +100% and loose refers to
the case when M, M at +200%. First row shows the average change in the Ridge coefficients in the last five iterations.
Second row shows the percentage of time the bond hits the constraint. The specification with loose constraints
converges in 198 iterations. The specification with tight constraints never converges, therefore, we stop the code at

iteration 198.

Table 9 illustrates this point. The first row shows the average change in ridge coefficients across
consecutive PEA iterations for the last 50 iterations. The second row shows the percentage of
time that debt visits the constraint in the last iteration. In the specification with tight borrowing
constraint, the bond stays around 43% of the time close to the constraint and ridge coefficients
never stabilize. Alternatively, this can be seen in figure 5, which plots the total model prediction

error across the PEA iterations as the Maliar bound is being opened. In the specification with loose

49

constraints, the forecast errors begin to stabilize when the Maliar bound stops changing and the
algorithm slowly converges. In contrast, when constraints are tight, the ridge penalty parameter

keeps changing and the forecast errors never stabilize and remain large (see table 10).

200 T T T T T T 1.4

180 [1 1.2

160 1 1

140 - 1 0.8

120 1 0.6 -

% of GDP

100 =0 e e - 0.4

80 1 021

60 L— 0
40 50 60 70 80 90 100 40 50 60 70 80 90 100

Iteration Iteration
Figure 5: Convergence of model forecast errors using ridge regression
Notes: The figure shows the convergence of the model using ridge regression. Left panel shows the value of Maliar
bound in function of the algorithm iteration. Right panel shows the total model forecast error in function of the
algorithm iteration. Solid blue line - loose borrowing constraint. Dashed purple line - tight borrowing constraint.
Tight constraint refers to the case when M, M at £100% and loose constraint refers to the case when M, M at +200%.

E¢(tepinptir1) Ei(uerin) Ee(terin-1)
Tight Constraint 0.1634 0.2786 0.2664
Loose Constraint 0.0117 0.0679 0.0668

Table 10: Prediction accuracy using ridge regression
Notes: The table shows the average absolute forecast errors from model specifications tight and loose borrowing
constraint when solving them using PEA with Ridge regression. Tight refers to the case when M, M at £100% and
loose refers to the case when M, M at +200%. First row shows the average change in the Ridge coefficients in the
last five iterations. The specification with loose constraints converges in 198 iterations. The specification with tight

constraints never converges, therefore, we stop the code at iteration 198. We define the average absolute forecast
1 .
erroras 1 ¥ | Yien — Er(Yien) |-

We have also attempted to solve the two-bond model using ridge regression but in this case,
the problem of instability becomes even more severe as the long and the short bonds are negatively
correlated and highly volatile. As a result, bonds hit the constraint very frequently and the

algorithm fails to converge even before the Maliar bounds are open.”

37In the one bond code ridge penalty is a scalar. When solving the 2 bonds model we allow coefficients to have
different penalties, without any noticeable improvement.

50

B.4 Additional Figures

100
A $

0
0.75 0.8 0.85 0.9 0.95 1

p(x2,x3)

Figure 6: Bias squared of the mean squared prediction error with a neural network and a polynomial
Notes: The figure shows the bias squared of the mean squared prediction error 1/n Y} ; [y: — IE(]?,})]Z in function of
the correlation between x; and x3. Blue line with circles - NN, purple line with crosses - polynomial regression.

51

1,500 ¥

>

1,000

500

0
0.75 0.8 0.85 0.9 0.95 1

p(x2,x3)

Figure 7: Variance term of the mean squared prediction error with a neural network and a polynomial
Notes: The figure shows the variance component of the mean squared prediction error 1/n Y\ ; [y — E(9;)]? in
function of the correlation between x; and x3. Blue line with circles - NN, purple line with crosses - polynomial

regression.

C Neural Network Details

This appendix includes further details about the type of neural network used in section 2.

C.1 Artificial Neural Networks

Neural networks can be used efficiently for both regression and classification purposes (in a
supervised machine learning fashion) and clustering (in an unsupervised machine learning fashion).
In the context of our application, we focus on the former. Neural networks are typically composed
of three types of layers: (i) input, (i) hidden, and (iii) output. They can contain multiple hidden
layers but, for regression purposes, typically one or two hidden layers are sufficient.*® In our
application, the input layer takes as input the state space X; € R°. The hidden layer performs an
intermediate transformation of the state space. The output layer predicts the expectation terms
contained in the model optimality conditions E [g.(c;+1, X¢+1)|Xt] =~ Fe(Xi; w, B). See figure 8 for

a graphical illustration.

38n our application, we consider a neural network with one hidden layer. The reader can refer to Goodfellow et al.
(2016) for a general introduction to machine learning and deep learning in particular.

52

Input Hidden Output
layer layer layer

Figure 8: Artificial Neural Network Structure
Notes: The figure presents the structure of a single hidden layer artificial neural network. Each circle in the picture
represents an artificial neuron, and the arrows point in the direction of the information flow in the prediction process.
Neurons in the hidden layer perform the non-linear activation of inputs, which are combined linearly in the output

layer.

If the problem requires the approximation of E expectations terms, a neural network with one

hidden layer has the following functional form

S
Xm:H(Ewm,s'XS,t>r m:ll...’M,
5=0
M ~
Fe(Xp;w,) = o + E Yme Xm, e=1,---,E.
m=1

Note that the universal approximation theorem (see Cybenko, 1988 and Hornik et al., 1989) ensures
that every bounded continuous function can be approximated with arbitrarily small error, by a
network with one hidden layer. The hidden layer transforms the state space X; € R through M
linear combinations of the state variables, further transformed through an activation function #(x).

The activation function is typically a sigmoid

1

H(x) = TTexp(—x)’

In order to gain intuition about the behavior of this function, consider a more generic function

H(x;a) = m' where « is a parameter that regulates the activation rate. Intuitively, the

53

9.3 Note that neural

larger is a, the more H (x; «) resembles to a step function as shown in figure
40

networks are equivalent to linear regression if the activation function # is linear.

\ 4

Figure 9: Sigmoid Function
Notes: The plot of the function 7 (x;a). Solid blue line: Plot of the sigmoid function (when a = 1), typically used in
the hidden layer of a neural network. Dashed purple line: Plot of the 7 (x; &), when a = 10. The higher is « the more

the A function acquires the shape of a step function.

3In the context of deep learning (in contrast to shallow neural networks), the de-facto standard is rather the rectifier

(or ReLU) or swish activation functions.
40getting H to a linear function would be equivalent to approximating the expectations with linear polynomials in the

traditional PEA algorithm.

54

	Introduction
	User guide: Machine Learning and PEA
	Environment
	Supervised Machine Learning
	Fitting Neural Networks
	Example: Neural Networks and PEA Applied to the Neoclassical Investment Model
	Neural Networks and Multicollinearity

	Model and Solution Method
	Illustrative Model: One-Bond Economy
	Optimal Maturity Management with N Bonds
	NN-based Expectations Algorithm

	Numerical Results
	Calibration
	Optimal Debt Management with Three and Four Bonds

	Comparison with Alternative Methods
	Relation to Condensed PEA
	Relation to GSSA

	Conclusion
	Optimal Fiscal Policy with Epstein-Zin Preferences
	Implementation Details
	Algorithm Details
	Relation to Condensed PEA
	Relation to GSSA
	Additional Figures

	Neural Network Details
	Artificial Neural Networks

