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Roadmap

@ Stochastic neoclassical investment model with elastic labor supply
and CRRA preferences

@ Competitive equilibrium and planner equivalence
© Recursive formulation with Markov shocks
© Numerical solution: VFI with expectations (and labor)

©@ Homework Il
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Environment

Technology

Ye = F(Ke, Ne, Ze) = Ze KENF©, Kit1 = (1 = 0)Ke + Ir.

TFP shock drives business cycle — RBC model
Two states Z; € {Z;, Zy} with transition matrix
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Preferences (CRRA over C, disutility of work)
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The Firm's Problem

o Firm owns physical capital K; and chooses investment /;.

@ Production function:
Yt == Zt F(Kt, Nt)

Capital accumulation:

Kt+1 - (]. - (S)Kt + It

o Profits:
Dy = Z; F(Kh Nt) — welNe — I
@ Problem:
E Mo+ D
{TIE?\I): 0 Z 0,t Ut
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N
First-Order Conditions

o Labor demand:
wy = Z; FN(Kn Nt)

» Wages equal the marginal product of labor.

o Capital Euler equation:

1= B Mesa(Zera Fc(Ker, Newa) + (1= 0)) |

» The marginal cost of investing today equals the discounted marginal
return to capital tomorrow.
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N
Household Problem

Preferences

max Eo Zﬂt [u(Ce) — v(Ne)]
t=0

{Ct, Nt, Sty1, Bei1}e>0

Budget constraint

Ct + peSty1 + qeBey1 = welNy + (pe + Dt)St + Bt

p:: price of one share; D;: dividend per share. S;: shares; B;: risk-free
bond holdings. N;: elastic labor supply. Now w; and D; contain Z;.

FOCs / Pricing:

pt = E¢[M¢ 1 (pes1 + Det1)], gt = E¢[Mgr41].
Expected NPV of dividends Risk-free bond price
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______________________________
Household Problem: Elastic Labor Supply
With an elastic labor supply you have one more equation: the first-order

condition with respect to N;.

Intra-temporal Euler equation

Households work until the pain of supplying more labor (v,(/N;)) is exactly
balanced by the gain in consumption it provides (uc(Ce)ws).

uc(Ce)we = vp(Ny).

Note

If you prefer to avoid the complication of elastic labor supply, simply set
N; = 1 and drop the disutility of labor from preferences. This way you can
focus solely on introducing the TFP shock and risk aversion.
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Closing the Model

Market clearing conditions:
e Goods: Y; = Z:F(K:, Ny).
@ Labor: N; chosen by household (elastic), clears the labor market.
o Capital market: S; = 1.
@ Bonds: B; = 0.

Resource constraint (as before)
Combine firm and household: Ct + /t = Yt = ZtF(Kt, Nt) J
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From Competitive Equilibrium to Planner

Under perfect competition, CRS, no wedges, the CE allocation solves:

G 7-1 ¢Nt1+“’
l1—0 14+

)
max E t
{CtthvKH'l} 0;/6 [

subject to (all t):
Ce+ Kep1 = Ze KON 4+ (1 — 6)K:, Ko given.

Same logic as Class I: market clearing and firm FOCs replicate planner

optimality; new parts are in red and preferences.
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From Sequential to Recursive Formulation
Identify states and controls

State: Endogenous: K = K;. Exogenous: shock Z = Z; € {Z;, Zy}.
Controls: K' = Ky11, N = N,.

Problem to solve

/

V(K,Z) ma Sl le +8) . V(K',Z")
= X T /
’ K'>0, N[0,1] 1-—0o 1 + 2,2 ’ ’

s. to: C(K,N,K';Z) = ZK*N*"® — (K' — (1 - §)K), C>0.

Role of intra-temporal Euler

Directly optimize over N (using goldenx) OR solve: uc(C)w = v,p(N).
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Homework I

Solve numerically the problem in the previous slide with the following
parameters: § =0.96, « =1/3, 6 =0.10, 0 =2, ¢ =2, choose ¥ s.t.

) 0.9 0.1
SS ~o — = - =
N*~1/3at Z=E[Z]. Z. =09, Zy=11 N= [0.1 o.9] ‘

Stationary distribution of I1

For a symmetric two-state Markov chain you have a 50-50 probability to
be in either the L or H state in the long-run.

Long-run expectation

E[Z] = 0.5-Z, + 0.5 Zy = 0.5-0.95+ 0.5 - 1.05 = 1.
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First Step: Grid Centered at the (Average-Z) Steady State

Deterministic reference: set Z = Z = E[Z]. Find (K*, N*) so that:

1 = M (aZ(KSS)a_l(NSS)l_a +1— 5)7 M — ﬁ,

PINS)? = Z(1 = a)(K*)*(N%) " (C%) 7
——— ~ N——

Vn(Nt) wt

Center the K-grid at K*°:

Kmin = (1_7]) Kss’ Kimax = (1+77) Kss’

Uc( Css)

Ki S [Kmina Kmax]-

grid for example with n = 0.2
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VFI I: Discrete K’ Grid (global search)

Idea
Solve the deterministic model first and use it to initialize V(O(K;, Z,). J

Algorithm:
@ Initialize V(O)(Ki,zs) — VDeterministic(Kl_)_

@ For each (K, Zs), loop over KJ’ € {Kmin, - - - Kmax }-

» For given K, solve intratemporal FOC for N € [0, 1].
» Compute C, utility u(C, N). If C <0, set value to —oo.
» Compute expectation ), Mz 7 - V(”)(Kj’,Z’).

@ Set VII(K;, Z;) = max;{-} with argmax policy K'(K;, Zs), and
implied N(Kj, Zs).

@ Stop when ||Vt — v(0)|| < ¢
— —



VFI II: Interpolation + Golden Section (continuous K')
Idea

Keep the state grid for K and shocks Z, treat K’ as continuous in
[Kimin, Kmax]- Interpolate V(")(K’,Z’) and maximize in 1D.

Algorithm:
O Fix (Kji, Zs). Define

g(K/) = u(C(K;, N*(K/, Zs), K'; Zs), N*(K/7 Zs))
+BZ I_IZ,Z/ V(n)(K,7 Z,)v

Z/
where N* solves the intratemporal FOC and Vis interpolated.
@ Maximize g(K') over [Kmin, Kmax] (use goldenx).
© Update V("1(K;, Z;) and policies K’, N. lterate to convergence.
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Results: risk neutrality (o = 0) and inelastic labor (N = 1)

Policy function for investment

42+ = yvs—
Deterministic
4+ T em— 10w TFP
e High TFP
3.8 == == Deterministic S

Sl
34F
3.2

I I I I I I I |
28 3 3.2 3.4 3.6 3.8 4 4.2 4.4
K

Value function

3L I I I I I I |
28 3 3.2 34 3.6 3.8 4 4.2 4.4
K
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Results: risk aversion (o = 2) and inelastic labor (N = 1)

Policy function for investment

Deterministic
—— Low TFP

a2l e High TFP

=== === Deterministic SS

| I I I I I I |
28 3 3.2 3.4 3.6 3.8 4 4.2 4.4
K

Value function

25 I I I I I I I |
28 3 3.2 34 3.6 3.8 4 4.2 4.4

K
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Results: risk aversion (o = 2) and elastic labor (¢ = 2)

Policy function for investment

14
g 12 Deterministic
Q : —Low 7
s High 7
1k = mm = Deterministic SS
0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

K
Policy function for labor

0.95 1 1.05 11 1.15 1.2 1.25 1.3 1.35 1.4 1.45
K
Value function

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
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Economic Takeaway

Result

@ Once shareholders are risk averse, they care about consumption
smoothing.

Mechanism.

@ Investing too aggressively would mean sacrificing dividends today, so
identical firms accumulate capital gradually.

Overall message

@ Dynamics arise because agents value a smoother consumption path
rather than instant efficiency.
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GOOD LUCK!
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