

Intro to Numerical Methods

Class II: Real Business Cycle, Risk Aversion, Elastic Labor Supply

Alessandro T. Villa

Fall 2025

Roadmap

- ① Stochastic neoclassical investment model with elastic labor supply and CRRA preferences
- ② Competitive equilibrium and planner equivalence
- ③ Recursive formulation with Markov shocks
- ④ Numerical solution: VFI with expectations (and labor)
- ⑤ Homework II

Environment

Technology

$$Y_t = F(K_t, N_t, Z_t) = Z_t K_t^\alpha N_t^{1-\alpha}, \quad K_{t+1} = (1 - \delta)K_t + I_t.$$

TFP shock drives business cycle \rightarrow RBC model

Two states $Z_t \in \{Z_L, Z_H\}$ with transition matrix

$$\Pi = \begin{bmatrix} \pi_{LL} & \pi_{LH} \\ \pi_{HL} & \pi_{HH} \end{bmatrix}, \quad \Pr(Z_{t+1} = j \mid Z_t = i) = \pi_{ij}.$$

Preferences (CRRA over C , disutility of work)

$$u(C_t, N_t) = \frac{C_t^{1-\sigma} - 1}{1 - \sigma} - \psi \frac{N_t^{1+\varphi}}{1 + \varphi}, \quad \sigma > 0, \psi > 0, \varphi \geq 0.$$

The Firm's Problem

- Firm owns physical capital K_t and chooses investment I_t .
- Production function:

$$Y_t = \mathcal{Z}_t F(K_t, N_t)$$

- Capital accumulation:

$$K_{t+1} = (1 - \delta)K_t + I_t$$

- Profits:

$$D_t = \mathcal{Z}_t F(K_t, N_t) - w_t N_t - I_t$$

- Problem:

$$\max_{\{I_t, N_t\}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \mathcal{M}_{0,t} D_t \right]$$

First-Order Conditions

- **Labor demand:**

$$w_t = Z_t F_N(K_t, N_t)$$

- ▶ Wages equal the marginal product of labor.

- **Capital Euler equation:**

$$1 = \mathbb{E}_t \left[M_{t,t+1} (Z_{t+1} F_K(K_{t+1}, N_{t+1}) + (1 - \delta)) \right]$$

- ▶ The marginal cost of investing today equals the discounted marginal return to capital tomorrow.

Household Problem

Preferences

$$\max_{\{C_t, N_t, S_{t+1}, B_{t+1}\}_{t \geq 0}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t [u(C_t) - v(N_t)]$$

Budget constraint

$$C_t + p_t S_{t+1} + q_t B_{t+1} = w_t N_t + (p_t + D_t) S_t + B_t$$

p_t : price of one share; D_t : dividend per share. S_t : shares; B_t : risk-free bond holdings. N_t : elastic labor supply. Now w_t and D_t contain Z_t .

FOCs / Pricing:

$$p_t = \underbrace{\mathbb{E}_t[M_{t,t+1}(p_{t+1} + D_{t+1})]}_{\text{Expected NPV of dividends}}, \quad \underbrace{q_t}_{\text{Risk-free bond price}} = \mathbb{E}_t[M_{t,t+1}].$$

Household Problem: Elastic Labor Supply

With an elastic labor supply you have one more equation: the first-order condition with respect to N_t .

Intra-temporal Euler equation

Households work until the pain of supplying more labor ($v_n(N_t)$) is exactly balanced by the gain in consumption it provides ($u_c(C_t)w_t$).

$$u_c(C_t)w_t = v_n(N_t).$$

Note

If you prefer to avoid the complication of elastic labor supply, simply set $N_t = 1$ and drop the disutility of labor from preferences. This way you can focus solely on introducing the TFP shock and risk aversion.

Closing the Model

Market clearing conditions:

- Goods: $Y_t = Z_t F(K_t, N_t)$.
- Labor: N_t chosen by household (elastic), clears the labor market.
- Capital market: $S_t = 1$.
- Bonds: $B_t = 0$.

Resource constraint (as before)

Combine firm and household: $C_t + I_t = Y_t = Z_t F(K_t, N_t)$.

From Competitive Equilibrium to Planner

Under perfect competition, CRS, no wedges, the CE allocation solves:

$$\max_{\{C_t, N_t, K_{t+1}\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \psi \frac{N_t^{1+\varphi}}{1+\varphi} \right]$$

subject to (all t):

$$C_t + K_{t+1} = \textcolor{red}{Z_t} K_t^\alpha N_t^{1-\alpha} + (1-\delta)K_t, \quad K_0 \text{ given.}$$

Same logic as Class I: market clearing and firm FOCs replicate planner optimality; new parts are in red and preferences.

From Sequential to Recursive Formulation

Identify states and controls

State: Endogenous: $K \equiv K_t$. Exogenous: shock $Z \equiv Z_t \in \{Z_L, Z_H\}$.

Controls: $K' \equiv K_{t+1}$, $N \equiv N_t$.

Problem to solve

$$V(K, Z) = \max_{K' \geq 0, N \in [0,1]} \left\{ \frac{C^{1-\sigma} - 1}{1-\sigma} - \psi \frac{N^{1+\varphi}}{1+\varphi} + \beta \sum_{Z'} \pi_{Z, Z'} V(K', Z') \right\},$$

$$\text{s. to: } C(K, N, K'; Z) = Z K^\alpha N^{1-\alpha} - (K' - (1-\delta)K), \quad C \geq 0.$$

Role of intra-temporal Euler

Directly optimize over N (using `goldenx`) OR solve: $u_c(C)w = v_n(N)$.

Homework II

Solve numerically the problem in the previous slide with the following parameters: $\beta = 0.96$, $\alpha = 1/3$, $\delta = 0.10$, $\sigma = 2$, $\varphi = 2$, choose ψ s.t.

$N^{ss} \approx 1/3$ at $\bar{Z} = \mathbb{E}[Z]$. $Z_L = 0.9$, $Z_H = 1.1$, $\Pi = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$.

Stationary distribution of Π

For a symmetric two-state Markov chain you have a 50-50 probability to be in either the L or H state in the long-run.

Long-run expectation

$$\mathbb{E}[Z] = 0.5 \cdot Z_L + 0.5 \cdot Z_H = 0.5 \cdot 0.95 + 0.5 \cdot 1.05 = 1.$$

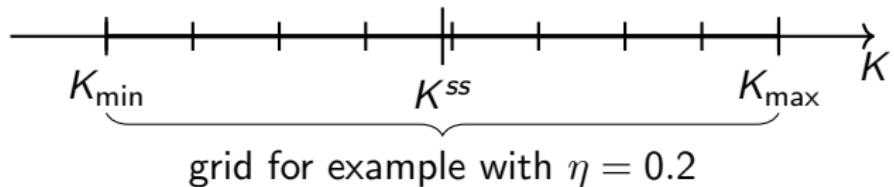
First Step: Grid Centered at the (Average- Z) Steady State

Deterministic reference: set $Z = \bar{Z} = \mathbb{E}[Z]$. Find (K^{ss}, N^{ss}) so that:

$$1 = M^{ss} \left(\alpha \bar{Z} (K^{ss})^{\alpha-1} (N^{ss})^{1-\alpha} + 1 - \delta \right), \quad M^{ss} = \beta,$$
$$\underbrace{\psi(N^{ss})^\varphi}_{v_n(N_t)} = \underbrace{\bar{Z}(1-\alpha)(K^{ss})^\alpha (N^{ss})^{-\alpha}}_{w_t} \underbrace{(C^{ss})^{-\sigma}}_{u_c(C^{ss})}.$$

Center the K -grid at K^{ss} :

$$K_{\min} = (1 - \eta) K^{ss}, \quad K_{\max} = (1 + \eta) K^{ss}, \quad K_i \in [K_{\min}, K_{\max}].$$



VFI I: Discrete K' Grid (global search)

Idea

Solve the deterministic model first and use it to initialize $V^{(0)}(K_i, Z_s)$.

Algorithm:

- ① Initialize $V^{(0)}(K_i, Z_s) = V^{\text{Deterministic}}(K_i)$.
- ② For each (K_i, Z_s) , loop over $K'_j \in \{K_{\min}, \dots, K_{\max}\}$.
 - ▶ For given K'_j , solve intratemporal FOC for $N \in [0, 1]$.
 - ▶ Compute C , utility $u(C, N)$. If $C \leq 0$, set value to $-\infty$.
 - ▶ Compute expectation $\sum_{Z'} \Pi_{Z, Z'} \cdot V^{(n)}(K'_j, Z')$.
- ③ Set $V^{(n+1)}(K_i, Z_s) = \max_j \{\cdot\}$ with argmax policy $K'(K_i, Z_s)$, and implied $N(K_i, Z_s)$.
- ④ Stop when $\|V^{(n+1)} - V^{(n)}\| < \varepsilon$.

VFI II: Interpolation + Golden Section (continuous K')

Idea

Keep the state grid for K and shocks Z , treat K' as *continuous* in $[K_{\min}, K_{\max}]$. Interpolate $V^{(n)}(K', Z')$ and maximize in 1D.

Algorithm:

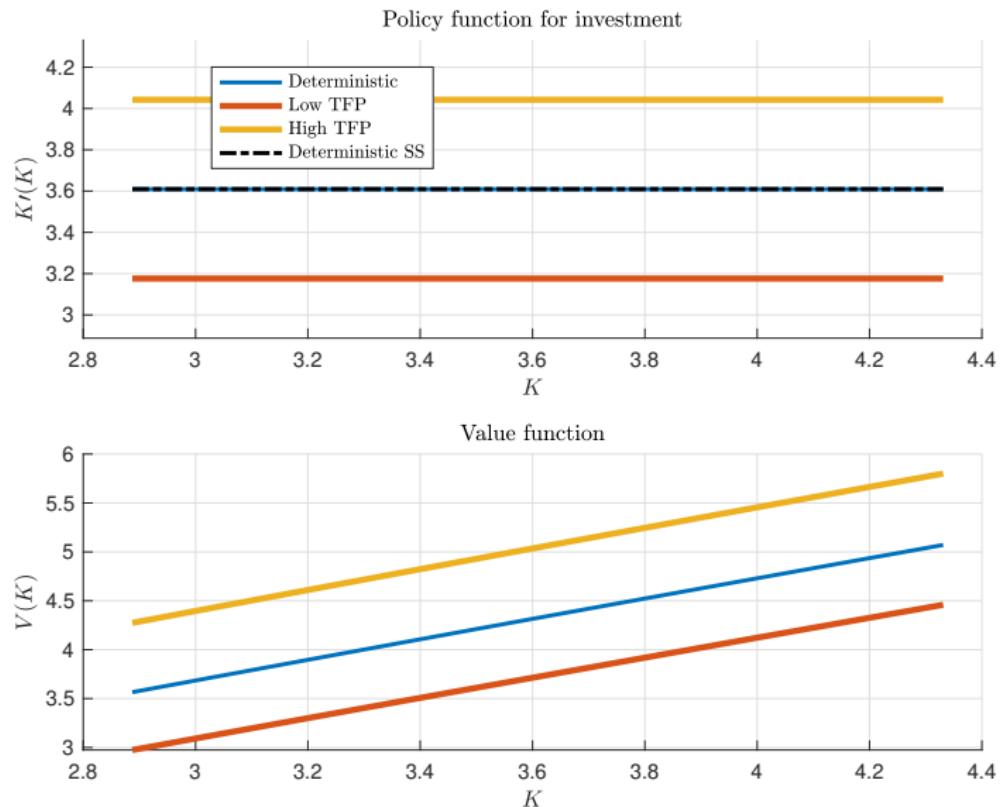
- ① Fix (K_i, Z_s) . Define

$$g(K') = u(C(K_i, N^*(K', Z_s), K'; \textcolor{red}{Z_s}), N^*(K', Z_s)) + \beta \sum_{Z'} \Pi_{Z, Z'} \tilde{V}^{(n)}(K', Z'),$$

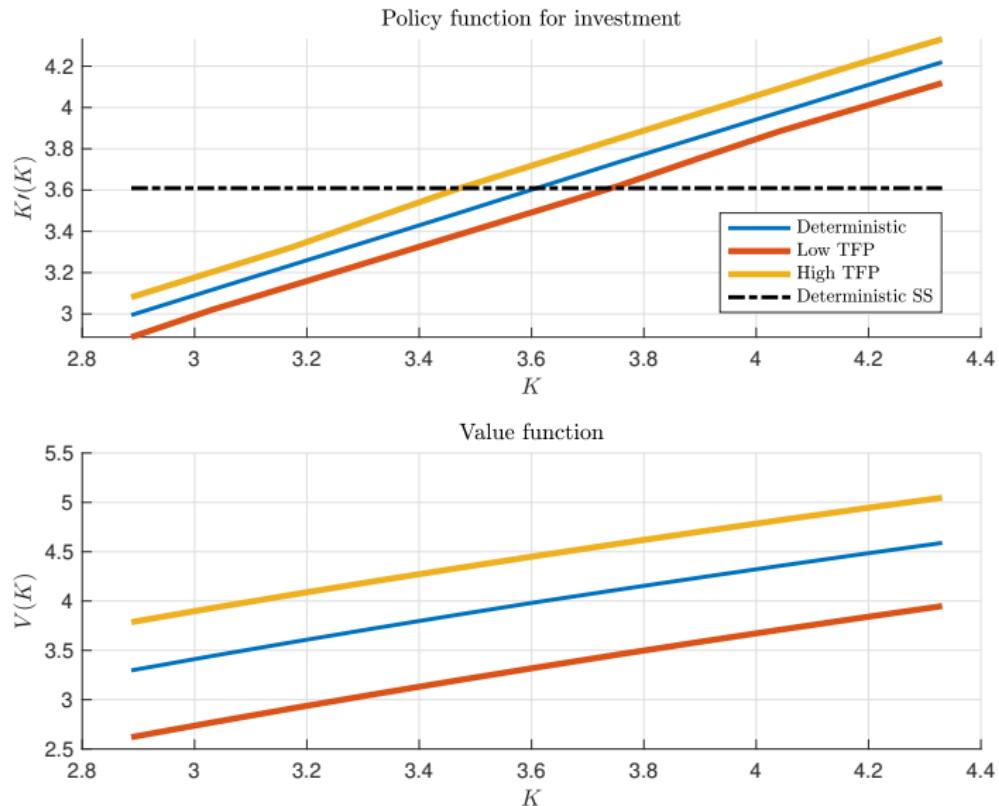
where N^* solves the intratemporal FOC and \tilde{V} is interpolated.

- ② Maximize $g(K')$ over $[K_{\min}, K_{\max}]$ (use `goldenx`).
- ③ Update $V^{(n+1)}(K_i, Z_s)$ and policies K' , N . Iterate to convergence.

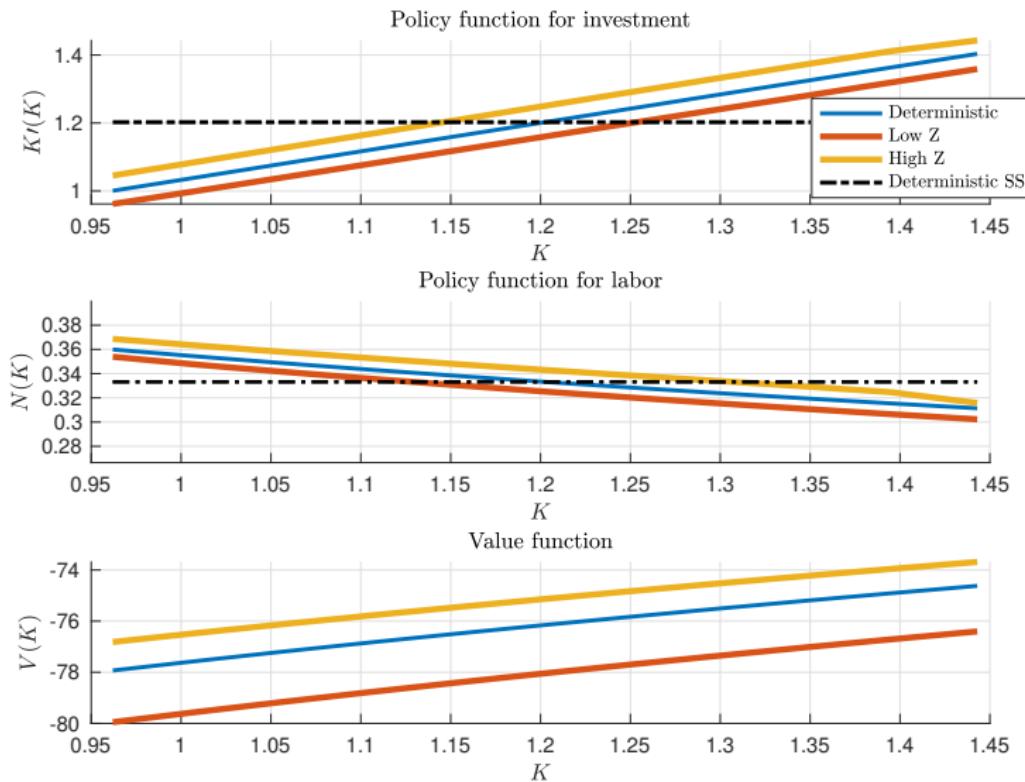
Results: risk neutrality ($\sigma = 0$) and inelastic labor ($N = 1$)



Results: risk aversion ($\sigma = 2$) and inelastic labor ($N = 1$)



Results: risk aversion ($\sigma = 2$) and elastic labor ($\varphi = 2$)



Economic Takeaway

Result

- Once shareholders are risk averse, they care about consumption smoothing.

Mechanism.

- Investing too aggressively would mean sacrificing dividends today, so identical firms accumulate capital gradually.

Overall message

- Dynamics arise because agents value a smoother consumption path rather than instant efficiency.

GOOD LUCK!