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Roadmap

1 Stochastic neoclassical investment model with elastic labor supply
and CRRA preferences

2 Competitive equilibrium and planner equivalence

3 Recursive formulation with Markov shocks

4 Numerical solution: VFI with expectations (and labor)

5 Homework II
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Environment

Technology

Yt = F (Kt ,Nt ,Zt) = Zt K
α
t N

1−α
t , Kt+1 = (1− δ)Kt + It .

TFP shock drives business cycle → RBC model

Two states Zt ∈ {ZL,ZH} with transition matrix

Π =

[
πLL πLH
πHL πHH

]
, Pr(Zt+1 = j | Zt = i) = πij .

Preferences (CRRA over C , disutility of work)

u(Ct ,Nt) =
C 1−σ
t − 1

1− σ
− ψ

N1+φ
t

1 + φ
, σ > 0, ψ > 0, φ ≥ 0.
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The Firm’s Problem

Firm owns physical capital Kt and chooses investment It .

Production function:
Yt = Zt F (Kt ,Nt)

Capital accumulation:

Kt+1 = (1− δ)Kt + It

Profits:
Dt = Zt F (Kt ,Nt)− wtNt − It

Problem:

max
{It ,Nt}

E0

[ ∞∑
t=0

M0,t Dt

]
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First-Order Conditions

Labor demand:
wt = Zt FN(Kt ,Nt)

▶ Wages equal the marginal product of labor.

Capital Euler equation:

1 = Et

[
Mt,t+1

(
Zt+1 FK (Kt+1,Nt+1) + (1− δ)

)]
▶ The marginal cost of investing today equals the discounted marginal

return to capital tomorrow.
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Household Problem

Preferences

max
{Ct ,Nt ,St+1,Bt+1}t≥0

E0

∞∑
t=0

βt [u(Ct)− v(Nt)]

Budget constraint

Ct + ptSt+1 + qtBt+1 = wtNt + (pt + Dt)St + Bt

pt : price of one share; Dt : dividend per share. St : shares; Bt : risk-free
bond holdings. Nt : elastic labor supply. Now wt and Dt contain Zt .

FOCs / Pricing:

pt = Et [Mt,t+1 (pt+1 + Dt+1)]︸ ︷︷ ︸
Expected NPV of dividends

, qt︸︷︷︸
Risk-free bond price

= Et [Mt,t+1] .
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Household Problem: Elastic Labor Supply

With an elastic labor supply you have one more equation: the first-order
condition with respect to Nt .

Intra-temporal Euler equation

Households work until the pain of supplying more labor (vn(Nt)) is exactly
balanced by the gain in consumption it provides (uc(Ct)wt).

uc(Ct)wt = vn(Nt).

Note

If you prefer to avoid the complication of elastic labor supply, simply set
Nt = 1 and drop the disutility of labor from preferences. This way you can
focus solely on introducing the TFP shock and risk aversion.

Alessandro T. Villa Intro to Numerical Methods Fall 2025 7 / 19



Closing the Model

Market clearing conditions:

Goods: Yt = ZtF (Kt ,Nt).

Labor: Nt chosen by household (elastic), clears the labor market.

Capital market: St = 1.

Bonds: Bt = 0.

Resource constraint (as before)

Combine firm and household: Ct + It = Yt = ZtF (Kt ,Nt).
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From Competitive Equilibrium to Planner

Under perfect competition, CRS, no wedges, the CE allocation solves:

max
{Ct ,Nt ,Kt+1}

E0

∞∑
t=0

βt

[
C 1−σ
t − 1

1− σ
− ψ

N1+φ
t

1 + φ

]

subject to (all t):

Ct + Kt+1 = Zt K
α
t N

1−α
t + (1− δ)Kt , K0 given.

Same logic as Class I: market clearing and firm FOCs replicate planner

optimality; new parts are in red and preferences.
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From Sequential to Recursive Formulation

Identify states and controls

State: Endogenous: K ≡ Kt . Exogenous: shock Z ≡ Zt ∈ {ZL,ZH}.
Controls: K ′ ≡ Kt+1, N ≡ Nt .

Problem to solve

V (K ,Z ) = max
K ′≥0,N∈[0,1]

{
C 1−σ − 1

1− σ
− ψ

N1+φ

1 + φ
+ β

∑
Z ′

πZ ,Z ′V (K ′,Z ′)

}
,

s. to: C (K ,N,K ′;Z ) = Z KαN1−α −
(
K ′ − (1− δ)K

)
, C ≥ 0.

Role of intra-temporal Euler

Directly optimize over N (using goldenx) OR solve: uc(C )w = vn(N).
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Homework II

Solve numerically the problem in the previous slide with the following
parameters: β = 0.96, α = 1/3, δ = 0.10, σ = 2, φ = 2, choose ψ s.t.

Nss ≈ 1/3 at Z̄ = E[Z ]. ZL = 0.9, ZH = 1.1, Π =

[
0.9 0.1
0.1 0.9

]
.

Stationary distribution of Π

For a symmetric two-state Markov chain you have a 50-50 probability to
be in either the L or H state in the long-run.

Long-run expectation

E[Z ] = 0.5 · ZL + 0.5 · ZH = 0.5 · 0.95 + 0.5 · 1.05 = 1.
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First Step: Grid Centered at the (Average-Z ) Steady State

Deterministic reference: set Z = Z̄ = E[Z ]. Find (K ss ,Nss) so that:

1 = Mss
(
αZ̄ (K ss)α−1(Nss)1−α + 1− δ

)
, Mss = β,

ψ(Nss)φ︸ ︷︷ ︸
vn(Nt)

= Z̄ (1− α)(K ss)α(Nss)−α︸ ︷︷ ︸
wt

(C ss)−σ︸ ︷︷ ︸
uc (C ss)

.

Center the K -grid at K ss :

Kmin = (1− η)K ss , Kmax = (1 + η)K ss , Ki ∈ [Kmin,Kmax].

KKmin K ss Kmax

grid for example with η = 0.2

Alessandro T. Villa Intro to Numerical Methods Fall 2025 12 / 19



VFI I: Discrete K ′ Grid (global search)

Idea

Solve the deterministic model first and use it to initialize V (0)(Ki ,Zs).

Algorithm:

1 Initialize V (0)(Ki ,Zs) = VDeterministic(Ki ).

2 For each (Ki ,Zs), loop over K ′
j ∈ {Kmin, . . . ,Kmax}.

▶ For given K ′
j , solve intratemporal FOC for N ∈ [0, 1].

▶ Compute C , utility u(C ,N). If C ≤ 0, set value to −∞.

▶ Compute expectation
∑

Z ′ ΠZ ,Z ′ · V (n)(K ′
j ,Z

′).

3 Set V (n+1)(Ki ,Zs) = maxj{·} with argmax policy K ′(Ki ,Zs), and
implied N(Ki ,Zs).

4 Stop when ∥V (n+1) − V (n)∥ < ε.
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VFI II: Interpolation + Golden Section (continuous K ′)

Idea

Keep the state grid for K and shocks Z , treat K ′ as continuous in
[Kmin,Kmax]. Interpolate V (n)(K ′,Z ′) and maximize in 1D.

Algorithm:

1 Fix (Ki ,Zs). Define

g(K ′) = u(C (Ki ,N
⋆(K ′,Zs),K

′;Zs), N
⋆(K ′,Zs))

+β
∑
Z ′

ΠZ ,Z ′ Ṽ (n)(K ′,Z ′),

where N⋆ solves the intratemporal FOC and Ṽ is interpolated.

2 Maximize g(K ′) over [Kmin,Kmax] (use goldenx).

3 Update V (n+1)(Ki ,Zs) and policies K ′,N. Iterate to convergence.
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Results: risk neutrality (σ = 0) and inelastic labor (N = 1)
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Results: risk aversion (σ = 2) and inelastic labor (N = 1)
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Results: risk aversion (σ = 2) and elastic labor (φ = 2)
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Economic Takeaway

Result

Once shareholders are risk averse, they care about consumption
smoothing.

Mechanism.

Investing too aggressively would mean sacrificing dividends today, so
identical firms accumulate capital gradually.

Overall message

Dynamics arise because agents value a smoother consumption path
rather than instant efficiency.

Alessandro T. Villa Intro to Numerical Methods Fall 2025 18 / 19



GOOD LUCK!
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