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Roadmap

1 Stochastic neoclassical investment with elastic labor supply and
CRRA preferences and nominal rigidities

2 Competitive equilibrium

3 Equilibrium Conditions

4 Numerical solution: Projection

5 Homework III
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Environment I (same as class II)

Technology

Yt = F (Kt ,Nt ,Zt) = Zt K
α
t N

1−α
t , Kt+1 = (1− δ)Kt + It .

TFP shock drives business cycle → RBC model

Two states Zt ∈ {ZL,ZH} with transition matrix

Π =

[
πLL πLH
πHL πHH

]
, Pr(Zt+1 = j | Zt = i) = πij .

Preferences (CRRA over C , disutility of work)

u(Ct ,Nt) =
C 1−σ
t − 1

1− σ
− ψ

N1+φ
t

1 + φ
, σ > 0, ψ > 0, φ ≥ 0.
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Environment II (new)

New elements

Firms now choose the nominal prices at which they sell their goods. There
is an aggregate price level Pt and gross inflation is defined as Πt ≡ Pt

Pt−1
.

Rotemberg adjustment costs

Firms incur a quadratic cost to adjust prices: R(Πt) ≡ φ
2

(
Πt − Π̄

)2
Yt ,

where φ > 0 measures nominal rigidity and Π̄ denotes the SS inflation rate.

Monetary policy (Taylor rule)

The central bank sets the gross nominal interest rate according to

1 + it = (1 + ī)

(
Πt

Π̄

)ϕπ (Yt

Ȳ

)ϕy
.
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Final Good Producer (Dixit–Stiglitz aggregator)
A competitive final good producer aggregates a continuum of
differentiated varieties Yi ,t into the final good Yt :

Yt =

(∫ 1

0
Y

θ−1
θ

i ,t di

) θ
θ−1

, θ > 1.

Given nominal prices {Pi ,t}i∈[0,1], it chooses {Yi ,t} to minimize cost

min
{Yi,t}

∫ 1

0
Pi ,t Yi ,t di s.t.

(∫ 1

0
Y

θ−1
θ

i ,t di

) θ
θ−1

≥ Yt .

FOC ⇒ demand for variety i and the aggregate price index:

Yi ,t =

(
Pi ,t

Pt

)−θ
Yt , Pt =

(∫ 1

0
P1−θ
i ,t di

) 1
1−θ

. (1)

Under perfect competition, the final good firm earns zero profits:

PtYt =

∫ 1

0
Pi ,t Yi ,t di .

Useful for later: the desired gross markup is µ ≡ θ

θ − 1
.

(In a symmetric equilibrium Pi,t = Pt ⇒ Yi,t = Yt .)
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The Firm i ’s Problem (with nominal rigidities)

Firm i owns physical capital Ki ,t and chooses investment Ii ,t , labor
Ni ,t , and its nominal price Pi ,t .

Production function and capital accumulation:

Yi ,t = Zt F (Ki ,t ,Ni ,t) and Ki ,t+1 = (1− δ)Ki ,t + Ii ,t . (2)

Profits (in nominal terms): Pi ,t Yi ,t − Wt Ni ,t − Pt Ii ,t − Pt Ri ,t .

Real profits (divide by Pt ; let wt ≡ Wt/Pt):

Di ,t =

(
Pi ,t

Pt

)
Yi ,t − wtNi ,t − Ii ,t − Ri ,t .

In a symmetric equilibrium Pi,t = Pt so
Pi,t

Pt
= 1, but not ex-ante.

Problem: max{Ii,t ,Ni,t ,Pi,t} E0 [
∑∞

t=0M0,t Di ,t ], s. to (1) and (2).
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First-Order Conditions I

Labor demand (with final-good multiplier Γt):

wt = Γt Zt FN(Kt ,Nt)

▶ The real wage equals marginal revenue product of labor: Γt is the
multiplier on the final-good demand constraint.

Capital Euler equation (with Γt+1):

1 = Et

[
Mt,t+1

(
Γt+1 Zt+1 FK (Kt+1,Nt+1) + (1− δ)

)]
▶ The marginal cost of investing today equals the discounted marginal

return, with Γt+1 scaling next period’s marginal product.
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First-Order Conditions II

Price-setting (Rotemberg NKPC, non-linear):

Yt·

(
1−θ + θΓt

)
− Rπ(Πt) Πt + Et

[
Mt,t+1 Rπ(Πt+1) Πt+1

]
= 0,

where

Rπ(Πt) ≡ φ
(
Πt − Π̄

)
Yt , θ > 1 is the elasticity of substitution.

▶ First term: desired markup vs. marginal cost (in your notation).
▶ Middle/last terms: current and expected Rotemberg adjustment costs,

discounted by Mt,t+1.
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Household Problem

Preferences

max
{Ct ,Nt ,St+1,Bt+1}t≥0

E0

∞∑
t=0

βt [u(Ct)− v(Nt)]

Budget constraint (in real terms)

Ct + ptSt+1 + qtBt+1 = wtNt + (pt + Dt)St +
Bt

Πt

pt : price of one share. Dt : dividend per share. St : shares; Bt : risk-free
bond holdings. Nt : elastic labor supply. qt : price of nominal bond.

FOCs / Pricing:

pt = Et [Mt,t+1 (pt+1 + Dt+1)] , (1 + it)
−1 ≡ qt = Et

[
Mt,t+1Π

−1
t

]
.
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Household Problem: Elastic Labor Supply

With an elastic labor supply you have one more equation: the first-order
condition with respect to Nt .

Intra-temporal Euler equation

Households work until the pain of supplying more labor (vn(Nt)) is exactly
balanced by the gain in consumption it provides (uc(Ct)wt).

uc(Ct)wt = vn(Nt).
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Closing the Model

Market clearing conditions:

Goods: Yt = ZtF (Kt ,Nt).

Labor: Nt chosen by household (elastic), clears the labor market.

Capital market: St = 1.

Bonds: Bt = 0.

Resource constraint

Combine firm and household: Ct + It +R(Πt) = Yt = ZtF (Kt ,Nt).
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Equilibrium
Given state variables Xt ≡ {Kt ,Zt}, the equilibrium is a set of policy
functions {N(Xt),Π(Xt),K

′(Xt), Γ(Xt)} that solve:

1. 1 = Et

[
Mt,t+1

(
Γ(Xt+1)Zt+1 FK (K

′(Xt),N(Xt+1)) + (1− δ)
)]

,

2. uc(C(Xt))w(Xt) = vn(N(Xt)),

3. Y (Xt)·

(
1− θ + θΓ(Xt)

)
− Rπ(Π(Xt)) Π(Xt) + Et

[
Mt,t+1 Rπ(Π(Xt+1)) Π(Xt+1)

]
= 0,

4. q(Xt) = Et

[
Mt,t+1 (Π(Xt+1))

−1
]
,

where:

1. Y (Xt) = ZtK
α
t N(Xt)

1−α,

2. C(Xt) = Y (Xt)− (K ′(Xt)− (1− δ)Kt)−R(Π(Xt)),

3. W (Xt) = Γ(Xt)ZtK
α
t (1− α)N(Xt)

−α,

4. q(Xt) =
β

Π̄

(
Π(Xt)

Π̄

)−ϕπ
(
Y (Xt)

Ȳ

)−ϕy

.
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Homework III

Solve numerically the equilibrium in the previous slide with the following
parameters: β = 0.96, α = 1/3, δ = 0.10, σ = 2, φ = 2, choose ψ s.t.

Nss ≈ 1/3 at Z̄ = E[Z ]. ZL = 0.99, ZH = 1.01, Π =

[
0.9 0.1
0.1 0.9

]
.

Nominal rigidities and elasticity parameters

Set φ = 5 and θ = 7.

Taylor Rule parameters

Set ϕπ = 1.5 (Taylor principle) and ϕY = 0.3.
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Numerical Solution: Projection Overview

Unknown policy functions on states X = (K ,Z ):

N(K ,Z ), Π(K ,Z ), K ′(K ,Z ), Γ(K ,Z ).

Solve the steady state and build a grid for K as in the previous class.
Use the steady state values to initialize your policy functions.

Approximate each policy with linear polynomials in K (separately by
Z state).

Choose coefficients to make the model’s equilibrium conditions hold
at the nodes in the grid.
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Steady-State System

1. Technology and resource constraint

Ȳ = Z̄ K̄αN̄1−α, Ȳ = C̄ + Ī , Ī = δ K̄ .

2. Household optimality (intra-temporal condition)

uc (C̄) w̄ = vn(N̄), uc (C) = C−σ , vn(N) = ψNφ ⇒ w̄ = ψ C̄σ N̄φ.

3. Firms (labor and capital conditions)

w̄ = Γ̄ Z̄ FN(K̄ , N̄) = Γ̄ Z̄ (1− α) K̄αN̄−α,

1 = β
[
Γ̄ Z̄ FK (K̄ , N̄) + 1− δ

]
= β

[
Γ̄ Z̄ α( Ȳ

K̄
) + 1− δ

]
.

4. Price-setting (Rotemberg NKPC in steady state)

Since Πt = Π̄, adjustment costs vanish:

0 = Ȳ
(
1− θ + θ Γ̄

)
⇒ Γ̄ = θ−1

θ
.
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Policy Approximations (Quadratic in K by Z state)

Quadratic forms (when Z = ZL)

N(K ,ZL) = aLN + bLN K + cLN K 2,

Π(K ,ZL) = aLΠ + bLΠ K + cLΠ K 2,

K ′(K ,ZL) = aLK ′ + bLK ′ K + cLK ′ K 2,

Γ(K ,ZL) = aLΓ + bLΓ K + cLΓ K 2.

Quadratic forms (when Z = ZH)

N(K ,ZH) = aHN + bHN K + cHN K 2,

Π(K ,ZH) = aHΠ + bHΠ K + cHΠ K 2,

K ′(K ,ZH) = aHK ′ + bHK ′ K + cHK ′ K 2,

Γ(K ,ZH) = aHΓ + bHΓ K + cHΓ K 2.
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Projection Step: Residuals and Updates
Initialize the 24 coefficients (from the SS). For each node (Km,ZL) and (Km,ZH):

1 Evaluate future functions.
Use your current coefficients to approximate all policy functions that appear
with Xt+1: N

′(Xt+1), Π′(Xt+1), K ′′(Xt+1), Γ′(Xt+1). Expectations
over Z ′ ∈ {ZL,ZH} use the transition matrix Π.

2 Solve the four equilibrium conditions at each node.
For the given (Km,Zℓ), solve jointly for the current values
{Nm, Πm, K

′
m, Γm } to zero the four residuals. This is a nonlinear system

of four equations per node. In Matlab, you can solve it with fsolve.

3 Update policy coefficients.
Once all {Nm,Πm,K

′
m, Γm} are obtained on the grid:

▶ Regress each function on Km separately for Z = ZL and Z = ZH :

N(Km,Zℓ) = aℓN + bℓNKm, Π(Km,Zℓ) = aℓΠ + bℓΠKm, etc.

▶ Update the 24 coefficients {a, b, c} and iterate until convergence. Stop
when successive coefficients change less than a tolerance (e.g.
|∆a|, |∆b| < 10−5) or the residuals at all nodes are near zero.
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Simulating the TFP Process (2-state Markov chain)

Inputs: states {ZL,ZH}, transition matrix Π =

[
πLL πLH
πHL πHH

]
, horizon T , initial

state Z0, use a fixed seed for replicability, e.g. in Matlab rng(100,"twister").

Inverse–CDF update rule (for t = 0, 1, . . . ,T−1)

Draw ut ∼ U(0, 1) and set

Zt+1 =


ZL, if Zt = ZL and ut ≤ πLL,

ZH , if Zt = ZL and ut > πLL,

ZL, if Zt = ZH and ut ≤ πHL,

ZH , if Zt = ZH and ut > πHL.

Start from Z0 (e.g., just choose L or H).

Save {Zt}T−1
t=0 to feed into the policy simulation.
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Simulating the Model Using the Policy Functions
Given: converged quadratic policy approximations for each Z ∈ {ZL,ZH},

N(K ,Zℓ) = aℓN + bℓNK + cℓNK
2, Π(K ,Zℓ) = aℓΠ + bℓΠK + cℓΠK

2,

K ′(K ,Zℓ) = aℓK ′ + bℓK ′K + cℓK ′K 2, Γ(K ,Zℓ) = aℓΓ + bℓΓK + cℓΓK
2.

1 Initialize: K0 = K̄ (SS) and Z0 from the Markov chain.

2 For t = 0, 1, . . . ,T−1 with state (Kt ,Zt = Zℓ):

Evaluate policies: Nt = N(Kt ,Zℓ), Πt = Π(Kt ,Zℓ),

Γt = Γ(Kt ,Zℓ), Kt+1 = K ′(Kt ,Zℓ).

Aggregate quantities: Yt = ZtK
α
t N

1−α
t , It = Kt+1 − (1− δ)Kt ,

wt = Γt Zt (1− α)Kα
t N

−α
t ,

R(Πt) =
φ

2
(Πt − Π̄)2 Yt , Ct = Yt − It −R(Πt).

Policy block: 1 + it = (1 + ī)
(

Πt

Π̄

)ϕπ
(

Yt

Ȳ

)ϕy

, qt =
1

1 + it
.

3 Advance the shock: draw Zt+1 via the Markov rule (previous slide).

After burn-in B, keep {Kt ,Nt ,Πt , Γt ,Yt ,Ct , It ,wt , it} for moments/plots.

(Optional) Monitor Euler/NKPC residuals along the path as simulation
diagnostics.
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Simulate a positive TFP shock
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Economic Takeaway

A positive productivity shock (Zt ↑)
Firms are more efficient → can produce more with the same inputs.

Output Yt , capital Kt , consumption Ct , and real wages wt all rise.

Labor Nt falls: people can enjoy more income while working less.

Prices adjust slowly (Rotemberg nominal rigidities)

Higher productivity lowers firms’ marginal costs (Γt ↓).
Firms face less pressure to raise prices → inflation Πt falls.

The economy experiences a smooth, disinflationary expansion.

Overall message

Supply-driven boom: output and welfare rise while inflation declines.
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GOOD LUCK!
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