Intro to Numerical Methods — Homework 3 Guide
Class III: Nominal Rigidities, Technology Shocks, and Projection

Alessandro T. Villa

Fall 2025

Learning Goals
In this assignment you will:
1. Formulate a dynamic model with sticky prices (Rotemberg adjustment costs).
2. Derive and use a system of FOCs including the NKPC residual in levels.
3. Implement projection time iteration: pointwise policy solves + coefficient updates.

4. Simulate the economy under a Markov TFP process and produce IRFs.

1 Economic Environment

Representative household with CRRA utility over consumption and disutility of labor:

cl=7 -1 N1+
1—7 Xl—i—n'

u(C,N) =
Firm technology (Cobb—Douglas) and factors:
Yi=Z; KPNST W, =T Zy K& (1 — o) N7 “.
Capital evolves with investment I; and depreciation §:
K1 =(1-0)K+ I, Ciy=Y:,— I, - R(I1, Y2).
Rotemberg price adjustment (in levels):
R, Y) = £(1 ~ 1)2Y,, Ru(l, ¥i) = o(IL, — Y.
Policy interest (one-period bond price) via Taylor rule in levels:
=5 (F))
‘To\a Y '

TFP follows a two-state Markov chain Z € {Z1, Zg} with transition Pj.

Parameters (use these):
B=096,6=01a=3 v=2 x=116, =2, I=1.02, ¢ =10, 0 =7, ¢, = 1.5, ¢, = 0.3.

Price markup inverse at steady state: T'T5S = (6 —1)/6.

2 Equilibrium Conditions (Residual Form)

Let C,Y,W,IL,T', K’, N denote current variables at (K, 7). Define expectations over Z’ using Pz
and projected policies for (K', Z").
(i) Capital Euler (physical investment):

uc(C")
uc(C)

1=E|3 (1+I'MPK’ - 5)].

(ii) Labor intratemporal condition:

uc(C)W =wun(N).

(iii) NKPC in levels (Rotemberg) (only if ¢ > 0):

uc(C')

I’ YHh1I'| =o.
uc(C) Ru(IL, ") !

(1 0+6F)YRH(H,Y)H+E[5

(iv) Bond pricing vs policy (consistency):

uc(C') 1 _
uc(C) H’} =0

q(ILY) ~E|8

These yield a system of 4 residuals.

3 Steady State (for centering)

With T' = I'"SS and IT = II, solve for NS from static conditions, then compute K55, WSS ySS, CSS

4 Discretization and Basis (Projection)

« State grid: capital grid K € [K55(1—explore), K5(1+explore)] with g.numk=11.

e TFP states: 7 L =10.99, Z H = 1.01, transition Py = [8? 8;}

e Policies to approximate:
{K'(K,Z), T'(K,Z), (K, Z), N(K,Z)}.

» Basis: quadratic polynomial in K per Z (linear regression for coefficients):

J(K;a)=ap+ a1 K + K2

If needed, you may solve NS5 by a scalar root finder using the SS FOCSs; then back out K% from the capital
FEuler in SS.

=W N =

5 Algorithm — Projection Time Iteration

We iterate on policy surfaces rather than on the value function.

High-level loop

1. Initialize policy guesses near SS: K/ = K55 II =1II, T = I'™S, N = NS5 for all grid points
and both Z states.

2. Pointwise solves: for each grid point (K, Z;), solve the FOCs at that point for the unknown
controls (sticky: [K',T',II, N|; flex: [K', N]), taking expectations through the current projected
policies.

3. Update policy arrays with dampening.
4. Refit projection coefficients (per Z and per policy) by OLS on the basis.

5. Check convergence via relative sup-norm of policies; repeat.

Pointwise nonlinear system (pseudocode)

/4 Unknowns at (K,Z): = = [Knext, Gammatilde, PI, NJ % (sticky-price case)

obj = @(x) FOCs_dyn(XK, x(1), x(2), x(3), x(4), Z, Z_index, p, f, Proj);
x0 = [Kp_guess, Gamma_guess, PI_guess, N_guess]; % from previous iter
X = fsolve(obj, x0, options); /4 solve residuals=0

Listing 1: Pointwise FOCs at (K,Z)

Expectations via projection

Inside FOCs_dyn, when constructing expectations at (K’, Z’), evaluate next-period controls from
the current projection:

K'"=K\(K':Z), TI'=0L(K;z"), W =IM0(K;7), N =NK'2.

Use these to compute Y, C” and the expected terms in the Euler/NKPC/bond residuals.

Dampening and error metric
Update policies with a damping factor A € (0,1):
gnew —)\g* + (1 _)\) gold‘

Track the maximum relative change across all policy arrays as the convergence criterion.

6 Implementation Hints

e« Numerical stability: cast unknowns to real before using them; guard divisions by small
numbers; keep N € (0, 1).

e FSOLVE: Levenberg-Marquardt with tight tolerances typically works well here. Use previ-
ous iteration’s solution as x0. Read the MATLAB documentation for a brief overview of the
methods that £solve uses to solve a system of N nonlinear equations.

https://www.mathworks.com/help/optim/ug/equation-solving-algorithms.html

© 0 9 O W N

== e
No= O

13
14
15
16

« Projection refit: per Z, run OLS of each policy array on the basis matrix X = [1, K, K?|
to refresh coefficients.

e Taylor-rule consistency: remember the bond pricing residual equates the policy price
q(I1,Y) to the asset-pricing EMR.

7 Suggested File Structure

o HW3_main.m (driver: parameters, grids, initial policies, call solver, simulate, plot)

e Functions/FOCs_dyn.m (build residual vector given (K, Z) and guesses of the future policy
functions)

o Functions/ProjectionTimeIteration.m (outer iteration loop)
o Functions/Project.m (refit projection coefficients by OLS)

o Utils/goldenx.m (if you reuse it) and any small helpers

8 Simulation and IRFs

After convergence:

a) Generate a length-T" Markov chain for Z; with the given Pj.
b) Initialize K; = K5 and iterate forward using the projected policies:

{Nt, Ki 1, T, 1L} = {Nvl/a7f7ﬁ}(Kt; Zy).

c) Recover W, Y;, C; from definitions (including Rotemberg cost in Cy).

d) Select a shock window (e.g., to:tend) and plot IRFs for Z,Y, C, K, W, N,T", Il against their SS
lines.

Pseudo-MATLAB Snippets (for reference)

Driver. (main.m)
/% Params, functions f.*, steady state (NSS,KSS, etc.)
% Grid and basis: g.k_grd, X = [1, K, K. 2]

% Initial policy guesses near SS for both Z states
kprime0 = KSS*ones(g.numK, p.nz);

PIO = p.Pibar*ones(g.numK, p.nz);
Gamma0 = p.GammaTSS*ones(g.numK, p.nz);
NO = p.NSS*ones(g.numK, p.nz);

/% Projection container

Proj.numPolicy = 4; 4 [K’, Gamma~, PI, NJ

Proj.Poly = @(K,alphas,z,pol) alphas(l,z,pol) + alphas(2,z,pol).*K + alphas(3,
z,pol) .*K."2;

/% Iterate policies by projection
[err, kpol, PIpol, Gampol, Npol, Proj] =
ProjectionTimeIteration(p,g,f,kprime0,GammaO ,PI0O,NO,Proj);

D U W N =

© 00 9 O s W N

T T T T S S
X N R O © N A W N = O

24

25
26
27
28
29
30
31
32

[VU N

© 0 N O

Projection refit per Z and policy (Project.m).

for z = 1:p.nz
Proj.alphas(:,z,1) =
Proj.alphas(:,z,2) =
Proj.alphas(:,z,3) =
Proj.alphas(:,z,4) =
end

regress (kpol(:,z),
regress (Gampol (:,z)
regress (PIpol(:,z),
regress (Npol(:,z),

Residuals builder (FOCs_dyn.m).
% Within-period objects

W o=
Y = £.PI(Z, 1, K, N);

Inv = Knext - (1 - p.delta) * K;
C =Y - Inv - f£f.Phi(PI, Y);

/ Ezpectations via projected next-period policies at (Knezxt,

g.X); VA
, 8.X);5 X

g.X);

K')
Gamma ~
g.X); J PI
AN

Gammatilde * Z * K"p.alpha * (1-p.alpha) * N~ (-p.alpha);

Z’)

ENKPC = 0; EMR = 0; EMPK = 0;

for zp = 1:p.nz

% Pull K’’, Gamma’, PI’, N’ from projection:
Knn = Proj.Poly(Knext, Proj.alphas, zp, 1);
Gamn = Proj.Poly(Knext, Proj.alphas, zp, 2);
PIp = Proj.Poly(Knext, Proj.alphas, zp, 3);
Np = Proj.Poly(Knext, Proj.alphas, zp, 4);
Yp = £.PI(p.z(zp),1,Knext,Np);

Invp = Knn - (1 - p.delta)*Knext;

Cp = Yp - Invp - f.Phi(PIp, Yp);

w = p.Pz(Z_index, zp); % transition prob

MR =

EMR = EMR + w * MR;

p-beta * f.du(Cp,p.gamma)/f.du(C,p.gamma) / Plp;

ENKPC= ENKPC+ w * (p.beta * f.du(Cp,p.gamma)/f.du(C,p.gamma) * f.Phiprime (PIp

,Yp) * PIp);
EMPK =

PIk(p.z(zp),1,Knext,Np)
end

/% Residuals (sticky case)

EMPK + w * (p.beta * f.du(Cp,p.gamma)/f.du(C,p.gamma) * (1 + Gamnxf.
- p.delta));

(1 - p.theta + p.theta*Gammatilde)*Y - f.Phiprime(PI,Y)*PI + ENKPC;

err(1) = 1 - EMPK;

err(2) = f.du(C,p.gamma)*W - f.dv(N,p.chi,p.eta);

err(3) =

Q = (p.beta/p.Pibar) * (PI/p.Pibar) ~(-p.phipi) * (Y/p.YSS) (-p.phiy);

err(4) = Q - EMR;

Projection Time Iteration (ProjectionTimeIteration.m).

function [err, kprime, PI, Gamma, N, Projl

kprime , Gamma ,PI,N,Proj)

% Iterates on projected policy surfaces until

damp = 0.5;

tol = l1le-5;

options = optimoptions(@fsolve,’Algorithm’,
)

err = 1;

while err > tol

for iK = 1:g.numkK

= ProjectionTimeIteration(p,g,f,

convergence.

’Levenberg-Marquardt’,’Display’,’off’

10 for iZ = 1:p.nz

11 K = g.k_grd(iK); Z = p.z(iZ);

12 x0 = [kprime(iK,iZ), Gamma(iK,iZ), PI(iK,iZ), N(iK,iZzZ)1;

13 obj = @(x) FOCs_dyn(K, x(1), x(2), x(3), x(4), Z, iZ, p, f, Proj);

14 x = fsolve(obj, x0, options);

15 k_temp (iK,iZ)=x(1); G_temp(iK,iZ)=x(2); PI_temp(iK,iZ)=x(3); N_temp (iK,iZ)=x(4);
16 end

17 end

18

19 /% Dampened update and convergence check
20 kprime = damp*k_temp + (1-damp)*kprime;
21 Gamma = damp*G_temp + (l-damp)*Gamma;
22 PI = damp*PI_temp + (1-damp)*PI;

23 N = damp*N_temp + (1-damp)*N;

24 err = max ([max(abs(k_temp(:)-kprime(:))./kprime(:)),
25 max (abs (PI_temp (:)-PI(:))./PI(:))]1);

26 end

27 end

	Economic Environment
	Equilibrium Conditions (Residual Form)
	Steady State (for centering)
	Discretization and Basis (Projection)
	Algorithm — Projection Time Iteration
	Implementation Hints
	Suggested File Structure
	Simulation and IRFs

