
Intro to Numerical Methods — Homework 3 Guide
Class III: Nominal Rigidities, Technology Shocks, and Projection

Alessandro T. Villa

Fall 2025

Learning Goals
In this assignment you will:

1. Formulate a dynamic model with sticky prices (Rotemberg adjustment costs).

2. Derive and use a system of FOCs including the NKPC residual in levels.

3. Implement projection time iteration: pointwise policy solves + coefficient updates.

4. Simulate the economy under a Markov TFP process and produce IRFs.

1 Economic Environment
Representative household with CRRA utility over consumption and disutility of labor:

u(C, N) = C1−γ − 1
1− γ

− χ
N1+η

1 + η
.

Firm technology (Cobb–Douglas) and factors:

Yt = Zt Kα
t N1−α

t , Wt = Γt Zt Kα
t (1− α)N−α

t .

Capital evolves with investment It and depreciation δ:

Kt+1 = (1− δ)Kt + It, Ct = Yt − It −R(Πt, Yt).

Rotemberg price adjustment (in levels):

R(Πt, Yt) = φ

2 (Πt − Π̄)2 Yt, RΠ(Πt, Yt) = φ(Πt − Π̄)Yt.

Policy interest (one-period bond price) via Taylor rule in levels:

qt ≡
β

Π̄

(Πt

Π̄

)−ϕπ
(

Yt

Ȳ

)−ϕy

.

TFP follows a two-state Markov chain Z ∈ {ZL, ZH} with transition PZ .

1

Parameters (use these):

β = 0.96, δ = 0.1, α = 1
3 , γ = 2, χ = 11.6, η = 2, Π̄ = 1.02, φ = 10, θ = 7, ϕπ = 1.5, ϕy = 0.3.

Price markup inverse at steady state: ΓTSS = (θ − 1)/θ.

2 Equilibrium Conditions (Residual Form)
Let C, Y, W, Π, Γ, K ′, N denote current variables at (K, Z). Define expectations over Z ′ using PZ

and projected policies for (K ′, Z ′).

(i) Capital Euler (physical investment):

1 = E
[
β

uC(C ′)
uC(C)

(
1 + Γ′ MPK′ − δ

)]
.

(ii) Labor intratemporal condition:

uC(C) W = vN (N).

(iii) NKPC in levels (Rotemberg) (only if φ > 0):

(1− θ + θΓ)Y −RΠ(Π, Y) Π + E
[
β

uC(C ′)
uC(C) RΠ(Π′, Y ′) Π′

]
= 0.

(iv) Bond pricing vs policy (consistency):

q(Π, Y)− E
[
β

uC(C ′)
uC(C)

1
Π′

]
= 0.

These yield a system of 4 residuals.

3 Steady State (for centering)
With Γ = ΓTSS and Π = Π̄, solve for NSS from static conditions, then compute KSS, W SS, Y SS, CSS.1

4 Discretization and Basis (Projection)
• State grid: capital grid K ∈ [KSS(1−explore), KSS(1+explore)] with g.numK=11.

• TFP states: Z_L = 0.99, Z_H = 1.01, transition PZ =
[
0.9 0.1
0.1 0.9

]
.

• Policies to approximate:

{K ′(K, Z), Γ(K, Z), Π(K, Z), N(K, Z) }.

• Basis: quadratic polynomial in K per Z (linear regression for coefficients):

ĝ(K; α) = α0 + α1K + α2K2.
1If needed, you may solve NSS by a scalar root finder using the SS FOCs; then back out KSS from the capital

Euler in SS.

2

5 Algorithm — Projection Time Iteration
We iterate on policy surfaces rather than on the value function.

High-level loop

1. Initialize policy guesses near SS: K ′ = KSS, Π = Π̄, Γ = ΓTSS, N = NSS for all grid points
and both Z states.

2. Pointwise solves: for each grid point (Ki, Zj), solve the FOCs at that point for the unknown
controls (sticky: [K ′, Γ, Π, N]; flex: [K ′, N]), taking expectations through the current projected
policies.

3. Update policy arrays with dampening.

4. Refit projection coefficients (per Z and per policy) by OLS on the basis.

5. Check convergence via relative sup-norm of policies; repeat.

Pointwise nonlinear system (pseudocode)

1 % Unknowns at (K,Z): x = [Knext , Gammatilde , PI , N] % (sticky -price case)
2 obj = @(x) FOCs_dyn (K, x(1) , x(2) , x(3) , x(4) , Z, Z_index , p, f, Proj);
3 x0 = [Kp_guess , Gamma_guess , PI_guess , N_guess]; % from previous iter
4 x = fsolve (obj , x0 , options); % solve residuals =0

Listing 1: Pointwise FOCs at (K,Z)

Expectations via projection

Inside FOCs_dyn, when constructing expectations at (K ′, Z ′), evaluate next-period controls from
the current projection:

K ′′ = K̂ ′(K ′; Z ′), Γ′ = Γ̂(K ′; Z ′), Π′ = Π̂(K ′; Z ′), N ′ = N̂(K ′; Z ′).

Use these to compute Y ′, C ′ and the expected terms in the Euler/NKPC/bond residuals.

Dampening and error metric

Update policies with a damping factor λ ∈ (0, 1):

gnew ← λ g∗ + (1− λ) gold.

Track the maximum relative change across all policy arrays as the convergence criterion.

6 Implementation Hints
• Numerical stability: cast unknowns to real before using them; guard divisions by small

numbers; keep N ∈ (0, 1).

• FSOLVE: Levenberg–Marquardt with tight tolerances typically works well here. Use previ-
ous iteration’s solution as x0. Read the MATLAB documentation for a brief overview of the
methods that fsolve uses to solve a system of N nonlinear equations.

3

https://www.mathworks.com/help/optim/ug/equation-solving-algorithms.html

• Projection refit: per Z, run OLS of each policy array on the basis matrix X = [1, K, K2]
to refresh coefficients.

• Taylor-rule consistency: remember the bond pricing residual equates the policy price
q(Π, Y) to the asset-pricing EMR.

7 Suggested File Structure
• HW3_main.m (driver: parameters, grids, initial policies, call solver, simulate, plot)

• Functions/FOCs_dyn.m (build residual vector given (K, Z) and guesses of the future policy
functions)

• Functions/ProjectionTimeIteration.m (outer iteration loop)

• Functions/Project.m (refit projection coefficients by OLS)

• Utils/goldenx.m (if you reuse it) and any small helpers

8 Simulation and IRFs
After convergence:

a) Generate a length-T Markov chain for Zt with the given PZ .

b) Initialize K1 = KSS and iterate forward using the projected policies:

{Nt, Kt+1, Γt, Πt} = {N̂ , K̂ ′, Γ̂, Π̂}(Kt; Zt).

c) Recover Wt, Yt, Ct from definitions (including Rotemberg cost in Ct).

d) Select a shock window (e.g., t0 : tend) and plot IRFs for Z, Y, C, K, W, N, Γ, Π against their SS
lines.

Pseudo-MATLAB Snippets (for reference)
Driver. (main.m)

1 % Params , functions f.*, steady state (NSS ,KSS , etc .)
2 % Grid and basis: g.k_grd , X = [1, K, K.^2]
3

4 % Initial policy guesses near SS for both Z states
5 kprime0 = KSS*ones(g.numK , p.nz);
6 PI0 = p.Pibar*ones(g.numK , p.nz);
7 Gamma0 = p. GammaTSS *ones(g.numK , p.nz);
8 N0 = p.NSS*ones(g.numK , p.nz);
9

10 % Projection container
11 Proj. numPolicy = 4; % [K’, Gamma~, PI , N]
12 Proj.Poly = @(K,alphas ,z,pol) alphas (1,z,pol) + alphas (2,z,pol).*K + alphas (3,

z,pol).*K.^2;
13

14 % Iterate policies by projection
15 [err , kpol , PIpol , Gampol , Npol , Proj] = ...
16 ProjectionTimeIteration (p,g,f,kprime0 ,Gamma0 ,PI0 ,N0 ,Proj);

4

Projection refit per Z and policy (Project.m).
1 for z = 1:p.nz
2 Proj. alphas (:,z ,1) = regress (kpol (:,z), g.X); % K’
3 Proj. alphas (:,z ,2) = regress (Gampol (:,z), g.X); % Gamma~
4 Proj. alphas (:,z ,3) = regress (PIpol (:,z), g.X); % PI
5 Proj. alphas (:,z ,4) = regress (Npol (:,z), g.X); % N
6 end

Residuals builder (FOCs_dyn.m).
1 % Within - period objects
2 W = Gammatilde * Z * K^p.alpha * (1-p.alpha) * N^(-p.alpha);
3 Y = f.PI(Z, 1, K, N);
4 Inv = Knext - (1 - p.delta) * K;
5 C = Y - Inv - f.Phi(PI , Y);
6

7 % Expectations via projected next - period policies at (Knext , Z’)
8 ENKPC = 0; EMR = 0; EMPK = 0;
9 for zp = 1:p.nz

10 % Pull K’’, Gamma ’, PI ’, N’ from projection :
11 Knn = Proj.Poly(Knext , Proj.alphas , zp , 1);
12 Gamn = Proj.Poly(Knext , Proj.alphas , zp , 2);
13 PIp = Proj.Poly(Knext , Proj.alphas , zp , 3);
14 Np = Proj.Poly(Knext , Proj.alphas , zp , 4);
15

16 Yp = f.PI(p.z(zp) ,1,Knext ,Np);
17 Invp = Knn - (1 - p.delta)*Knext;
18 Cp = Yp - Invp - f.Phi(PIp , Yp);
19

20 w = p.Pz(Z_index , zp); % transition prob
21 MR = p.beta * f.du(Cp ,p. gamma)/f.du(C,p. gamma) / PIp;
22 EMR = EMR + w * MR;
23 ENKPC= ENKPC+ w * (p.beta * f.du(Cp ,p. gamma)/f.du(C,p.gamma) * f. Phiprime (PIp

,Yp) * PIp);
24 EMPK = EMPK + w * (p.beta * f.du(Cp ,p. gamma)/f.du(C,p.gamma) * (1 + Gamn*f.

PIk(p.z(zp) ,1,Knext ,Np) - p.delta));
25 end
26

27 % Residuals (sticky case)
28 err (1) = 1 - EMPK;
29 err (2) = f.du(C,p.gamma)*W - f.dv(N,p.chi ,p.eta);
30 err (3) = (1 - p.theta + p.theta* Gammatilde)*Y - f. Phiprime (PI ,Y)*PI + ENKPC;
31 Q = (p.beta/p.Pibar) * (PI/p.Pibar)^(-p.phipi) * (Y/p.YSS)^(-p.phiy);
32 err (4) = Q - EMR;

Projection Time Iteration (ProjectionTimeIteration.m).
1 function [err , kprime , PI , Gamma , N, Proj] = ProjectionTimeIteration (p,g,f,

kprime ,Gamma ,PI ,N,Proj)
2 % Iterates on projected policy surfaces until convergence .
3 damp = 0.5;
4 tol = 1e -5;
5 options = optimoptions (@fsolve ,’Algorithm ’,’Levenberg - Marquardt ’,’Display ’,’off ’

);
6

7 err = 1;
8 while err > tol
9 for iK = 1:g.numK

5

10 for iZ = 1:p.nz
11 K = g.k_grd(iK); Z = p.z(iZ);
12 x0 = [kprime (iK ,iZ), Gamma(iK ,iZ), PI(iK ,iZ), N(iK ,iZ)];
13 obj = @(x) FOCs_dyn (K, x(1) , x(2) , x(3) , x(4) , Z, iZ , p, f, Proj);
14 x = fsolve (obj , x0 , options);
15 k_temp (iK ,iZ)=x(1); G_temp (iK ,iZ)=x(2); PI_temp (iK ,iZ)=x(3); N_temp (iK ,iZ)=x(4);
16 end
17 end
18

19 % Dampened update and convergence check
20 kprime = damp* k_temp + (1- damp)* kprime ;
21 Gamma = damp* G_temp + (1- damp)*Gamma;
22 PI = damp* PI_temp + (1- damp)*PI;
23 N = damp* N_temp + (1- damp)*N;
24 err = max ([max(abs(k_temp (:) -kprime (:))./ kprime (:)), ...
25 max(abs(PI_temp (:) -PI (:))./PI (:))]);
26 end
27 end

6

	Economic Environment
	Equilibrium Conditions (Residual Form)
	Steady State (for centering)
	Discretization and Basis (Projection)
	Algorithm — Projection Time Iteration
	Implementation Hints
	Suggested File Structure
	Simulation and IRFs

